1 mm²/s = 0.01 St
1 St = 100 mm²/s
Beispiel:
Konvertieren Sie 15 Quadratmillimeter pro Sekunde in Stokes:
15 mm²/s = 0.15 St
Quadratmillimeter pro Sekunde | Stokes |
---|---|
0.01 mm²/s | 1.0000e-4 St |
0.1 mm²/s | 0.001 St |
1 mm²/s | 0.01 St |
2 mm²/s | 0.02 St |
3 mm²/s | 0.03 St |
5 mm²/s | 0.05 St |
10 mm²/s | 0.1 St |
20 mm²/s | 0.2 St |
30 mm²/s | 0.3 St |
40 mm²/s | 0.4 St |
50 mm²/s | 0.5 St |
60 mm²/s | 0.6 St |
70 mm²/s | 0.7 St |
80 mm²/s | 0.8 St |
90 mm²/s | 0.9 St |
100 mm²/s | 1 St |
250 mm²/s | 2.5 St |
500 mm²/s | 5 St |
750 mm²/s | 7.5 St |
1000 mm²/s | 10 St |
10000 mm²/s | 100 St |
100000 mm²/s | 1,000 St |
Quadratmillimeter pro Sekunde (mm²/s) ist eine Messeinheit, die zur Quantifizierung der kinematischen Viskosität verwendet wird, die den Innenwiderstand eines Fluids gegen Fluss unter dem Einfluss der Schwerkraft beschreibt.Es ist definiert als das Verhältnis der dynamischen Viskosität zu der Fluiddichte und liefert entscheidende Einblicke in die Flüssigkeitsdynamik in verschiedenen Anwendungen.
Der Quadratmillimeter pro Sekunde ist Teil des metrischen Systems und unter dem internationalen System der Einheiten (SI) standardisiert.Diese Einheit ist in wissenschaftlichen und technischen Kontexten weithin akzeptiert, um Konsistenz und Genauigkeit bei der Messung der Flüssigkeitseigenschaften sicherzustellen.
Das Konzept der Viskosität stammt aus den frühen Untersuchungen der Flüssigkeitsmechanik im 17. Jahrhundert.Im Laufe der Zeit führte die Notwendigkeit präziser Messungen zur Entwicklung standardisierter Einheiten, einschließlich des Quadratmillimeters pro Sekunde.Diese Entwicklung hat es Ingenieuren und Wissenschaftlern ermöglicht, das Flüssigkeitsverhalten in verschiedenen Branchen besser zu verstehen und zu manipulieren, von der Automobil- bis zur chemischen Verarbeitung.
Um die Verwendung von Quadratmillimetern pro Sekunde zu veranschaulichen, betrachten Sie eine Flüssigkeit mit einer dynamischen Viskosität von 0,89 MPa · s (Millipascal-Sekunden) und einer Dichte von 1000 kg/m³.Die kinematische Viskosität kann wie folgt berechnet werden:
\ [ \ text {Kinematische Viskosität (mm²/s)} = \ frac {\ text {dynamische Viskosität (mpa · s)} {\ text {Dichte (kg/m³)}} \ Times 1000 ]
Ersetzen der Werte:
\ [ \ text {Kinematische Viskosität} = \ frac {0,89} {1000} \ times 1000 = 0,89 , \ text {mm²/s} ]
Quadratmillimeter pro Sekunde wird häufig in verschiedenen Bereichen verwendet, einschließlich Ingenieurwesen, Physik und Umweltwissenschaft.Es hilft bei der Bewertung des Flüssigkeitsflusss in Pipelines, zur Bestimmung des Verhaltens von Schmiermitteln und der Analyse der Leistung von Hydrauliksystemen.
Befolgen Sie die folgenden Schritte, um das Quadratmillimeter pro Sekunde auf unserer Website effektiv zu verwenden:
Durch die effektive Verwendung des Quadratmillimeters pro Sekunde können Sie wertvolle Einblicke in die Flüssigkeitsdynamik gewinnen und Ihr Verständnis und die Anwendung von Flüssigkeitsmechanik in Ihren Projekten verbessern.Weitere Informationen und den Zugriff auf das Tool finden Sie unter [Inayams Kinematik-Viskositätsrechner] (https://www.inayam.co/unit-converter/viscosity_kinematic).
Stokes (ST) ist eine Messeinheit für die kinematische Viskosität, die den Innenwiderstand eines Fluids gegen den Fluss unter dem Einfluss der Schwerkraft quantifiziert.Es ist definiert als die kinematische Viskosität einer Flüssigkeit mit einer dynamischen Viskosität von einem Centipoise und einer Dichte von einem Gramm pro kubisches Zentimeter.Einfacher hilft es zu verstehen, wie leicht ein Flüssigkeit fließt.
Die Stokes-Einheit ist Teil des Einheitensystems CGS (Zentimeter-Grammsekunden).Es wird üblicherweise in verschiedenen wissenschaftlichen und technischen Anwendungen verwendet, insbesondere in Bereichen wie Flüssigkeitsmechanik, Chemieingenieurwesen und Materialwissenschaft.Die Standardisierung von Stokes ermöglicht eine konsistente Kommunikation und Berechnungen in verschiedenen Disziplinen.
Der Begriff "Stokes" ist nach dem irischen Mathematiker und Physiker George Gabriel Stokes benannt, der im 19. Jahrhundert signifikant zur Untersuchung der Flüssigkeitsdynamik beitrug.Das Gerät hat sich im Laufe der Zeit entwickelt, wobei ihre Anwendung in verschiedene Branchen ausgeweitet wurde, einschließlich Erdöl, Lebensmittelverarbeitung und Pharmazeutika.
Um die kinematische Viskosität von Centistokes (CST) in Stokes (ST) umzuwandeln, können Sie die folgende Formel verwenden: [ \text{Kinematic Viscosity (St)} = \frac{\text{Kinematic Viscosity (cSt)}}{100} ] Wenn beispielsweise eine Flüssigkeit eine kinematische Viskosität von 200 CST hat, wäre ihre Viskosität in Stokes: [ \text{Kinematic Viscosity (St)} = \frac{200}{100} = 2 \text{ St} ]
Stokes wird in Branchen weit verbreitet, die präzise Messungen der Flüssigkeitsströmungseigenschaften erfordern.Anwendungen umfassen:
Um das Stokes -Kinematik -Viskositätswandler -Tool effektiv zu verwenden:
** Was ist Stokes (ST)? ** Stokes ist eine Messeinheit für die kinematische Viskosität, die darauf hinweist, wie leicht ein Flüssigkeit unter Schwerkraft fließt.
** Wie konvertiere ich CST in St? ** Um den CST -Wert durch 100 zu trennen, um Centistokes (CST) in Stokes (ST) umzuwandeln.
** Welche Branchen verwenden Stokes für die Messung der Viskosität? ** Stokes wird üblicherweise in der Erdöl-, Lebensmittelverarbeitungs- und Pharmaindustrie verwendet.
** Kann ich Stokes in andere Viskositätseinheiten konvertieren? ** Ja, in unserem Tool können Sie Stokes in verschiedene andere Viskositätseinheiten umwandeln, einschließlich CST und M²/s.
** Welche Bedeutung hat die kinematische Viskosität in der Flüssigkeitsdynamik? ** Die kinematische Viskosität ist entscheidend für das Verständnis des Flüssigkeitsströmungsverhaltens, das sich auf die Konstruktion und die Betriebseffizienz in verschiedenen Anwendungen auswirkt.
Weitere Informationen und den Zugriff auf den Stokes Kinematic Viscosity Converter finden Sie unter [Inayams Viskositätskinematik-Tool] (https://www.inayam.co/unit-converter/viscosity_kinematic).Dieses Tool soll Ihr Verständnis der Flüssigkeitsdynamik verbessern und Ihre Berechnungen optimieren, um die Genauigkeit und Effizienz in Ihren Projekten zu gewährleisten.