1 abF = 1,000,000,000,000,000 μF
1 μF = 1.0000e-15 abF
ಉದಾಹರಣೆ:
15 ಅಬ್ಫರದ್ ಅನ್ನು ಮೈಕ್ರೋಫಾರ್ಡ್ ಗೆ ಪರಿವರ್ತಿಸಿ:
15 abF = 15,000,000,000,000,000 μF
ಅಬ್ಫರದ್ | ಮೈಕ್ರೋಫಾರ್ಡ್ |
---|---|
0.01 abF | 10,000,000,000,000 μF |
0.1 abF | 100,000,000,000,000 μF |
1 abF | 1,000,000,000,000,000 μF |
2 abF | 2,000,000,000,000,000 μF |
3 abF | 3,000,000,000,000,000 μF |
5 abF | 5,000,000,000,000,000 μF |
10 abF | 10,000,000,000,000,000 μF |
20 abF | 20,000,000,000,000,000 μF |
30 abF | 30,000,000,000,000,000 μF |
40 abF | 40,000,000,000,000,000 μF |
50 abF | 50,000,000,000,000,000 μF |
60 abF | 60,000,000,000,000,000 μF |
70 abF | 70,000,000,000,000,000 μF |
80 abF | 80,000,000,000,000,000 μF |
90 abF | 90,000,000,000,000,000 μF |
100 abF | 100,000,000,000,000,000 μF |
250 abF | 250,000,000,000,000,000 μF |
500 abF | 500,000,000,000,000,000 μF |
750 abF | 750,000,000,000,000,000 μF |
1000 abF | 1,000,000,000,000,000,000 μF |
10000 abF | 10,000,000,000,000,000,000 μF |
100000 abF | 100,000,000,000,000,000,000 μF |
ಅಬ್ಫ್ರಾಡ್ (ಎಬಿಎಫ್) ಸೆಂಟಿಮೀಟರ್-ಗ್ರಾಂ-ಸೆಕೆಂಡ್ (ಸಿಜಿಎಸ್) ಘಟಕಗಳ ವ್ಯವಸ್ಥೆಯಲ್ಲಿ ವಿದ್ಯುತ್ ಕೆಪಾಸಿಟನ್ಸ್ ಆಗಿದೆ.ಇದು ವಿದ್ಯುತ್ ಚಾರ್ಜ್ ಅನ್ನು ಸಂಗ್ರಹಿಸುವ ಕೆಪಾಸಿಟರ್ ಸಾಮರ್ಥ್ಯವನ್ನು ಪ್ರತಿನಿಧಿಸುತ್ತದೆ.ನಿರ್ದಿಷ್ಟವಾಗಿ ಹೇಳುವುದಾದರೆ, ಒಂದು ಅಬ್ಫ್ರಾಡ್ ಅನ್ನು ಕೆಪಾಸಿಟನ್ಸ್ ಎಂದು ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿದೆ, ಇದು ಒಂದು ಕೂಲಂಬ್ ಚಾರ್ಜ್ ಅನ್ನು ಕೆಪಾಸಿಟರ್ನಾದ್ಯಂತ ಒಂದು ಅಸಹ್ಯಕರ ಸಂಭಾವ್ಯ ವ್ಯತ್ಯಾಸವನ್ನು ಉಂಟುಮಾಡಲು ಅನುವು ಮಾಡಿಕೊಡುತ್ತದೆ.ಕೆಪ್ಯಾಸಿಟಿವ್ ಘಟಕಗಳೊಂದಿಗೆ ಕೆಲಸ ಮಾಡುವ ವಿದ್ಯುತ್ ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು ಭೌತವಿಜ್ಞಾನಿಗಳಿಗೆ ಈ ಘಟಕವು ನಿರ್ಣಾಯಕವಾಗಿದೆ.
ಅಬ್ಫ್ರಾಡ್ ವಿದ್ಯುತ್ಕಾಂತೀಯ ಘಟಕಗಳ ಒಂದು ಭಾಗವಾಗಿದೆ, ಇದನ್ನು ಅಂತರರಾಷ್ಟ್ರೀಯ ಘಟಕಗಳ (ಎಸ್ಐ) ಹೋಲಿಸಿದರೆ ಇಂದು ಕಡಿಮೆ ಸಾಮಾನ್ಯವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ.Si ಯಲ್ಲಿ, ಕೆಪಾಸಿಟನ್ಸ್ ಅನ್ನು ಫಾರಾಡ್ಸ್ (ಎಫ್) ನಲ್ಲಿ ಅಳೆಯಲಾಗುತ್ತದೆ, ಅಲ್ಲಿ 1 ಅಬ್ಫರಡ್ 10^-9 ಫರಾಡ್ಗಳಿಗೆ ಸಮನಾಗಿರುತ್ತದೆ.ಎಲೆಕ್ಟ್ರಿಕಲ್ ಎಂಜಿನಿಯರಿಂಗ್ನಲ್ಲಿನ ನಿಖರವಾದ ಲೆಕ್ಕಾಚಾರಗಳು ಮತ್ತು ಅನ್ವಯಿಕೆಗಳಿಗೆ ಈ ಪರಿವರ್ತನೆಯನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಅತ್ಯಗತ್ಯ.
ಕೆಪಾಸಿಟನ್ಸ್ ಪರಿಕಲ್ಪನೆಯು ವಿದ್ಯುತ್ ವಿಜ್ಞಾನದ ಆರಂಭಿಕ ದಿನಗಳಿಂದ ಗಮನಾರ್ಹವಾಗಿ ವಿಕಸನಗೊಂಡಿದೆ.19 ನೇ ಶತಮಾನದ ಉತ್ತರಾರ್ಧದಲ್ಲಿ, ವಿಜ್ಞಾನಿಗಳು ವಿದ್ಯುತ್ ಚಾರ್ಜ್ ಮತ್ತು ಕ್ಷೇತ್ರಗಳ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಅನ್ವೇಷಿಸುತ್ತಿದ್ದಾಗ ಅಬ್ರಾಡ್ ಅನ್ನು ಸಿಜಿಎಸ್ ವ್ಯವಸ್ಥೆಯ ಭಾಗವಾಗಿ ಪರಿಚಯಿಸಲಾಯಿತು.ಕಾಲಾನಂತರದಲ್ಲಿ, ತಂತ್ರಜ್ಞಾನ ಮುಂದುವರೆದಂತೆ, ಆಧುನಿಕ ಅನ್ವಯಿಕೆಗಳಲ್ಲಿ ಪ್ರಾಯೋಗಿಕತೆಯಿಂದಾಗಿ ಫರಾಡ್ ಕೆಪಾಸಿಟನ್ಸ್ ಪ್ರಮಾಣಿತ ಘಟಕವಾಯಿತು.
ಅಬ್ಫ್ರಾಡ್ ಬಳಕೆಯನ್ನು ವಿವರಿಸಲು, 5 ಎಬಿಎಫ್ ಕೆಪಾಸಿಟನ್ಸ್ ಹೊಂದಿರುವ ಕೆಪಾಸಿಟರ್ ಅನ್ನು ಪರಿಗಣಿಸಿ.ಇದು 5 ಕೂಲಂಬ್ಗಳ ಚಾರ್ಜ್ ಅನ್ನು ಸಂಗ್ರಹಿಸಿದರೆ, ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ಕೆಪಾಸಿಟರ್ನಾದ್ಯಂತದ ಸಂಭಾವ್ಯ ವ್ಯತ್ಯಾಸವನ್ನು ಲೆಕ್ಕಹಾಕಬಹುದು:
[ V = \frac{Q}{C} ]
ಎಲ್ಲಿ:
ಮೌಲ್ಯಗಳನ್ನು ಬದಲಿಸುವುದು:
[ V = \frac{5 , \text{C}}{5 , \text{abF}} = 1 , \text{abvolt} ]
ಎಬಿಫರಾಡ್ ಅನ್ನು ಪ್ರಾಥಮಿಕವಾಗಿ ಸೈದ್ಧಾಂತಿಕ ಭೌತಶಾಸ್ತ್ರ ಮತ್ತು ಕೆಲವು ಎಂಜಿನಿಯರಿಂಗ್ ಅಪ್ಲಿಕೇಶನ್ಗಳಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ, ಅಲ್ಲಿ ಸಿಜಿಎಸ್ ವ್ಯವಸ್ಥೆಯು ಇನ್ನೂ ಪ್ರಸ್ತುತವಾಗಿದೆ.ಆದಾಗ್ಯೂ, ಹೆಚ್ಚಿನ ಪ್ರಾಯೋಗಿಕ ಅನ್ವಯಿಕೆಗಳು ಇಂದು ಎಸ್ಐ ವ್ಯವಸ್ಥೆಯೊಂದಿಗಿನ ಜೋಡಣೆಯಿಂದಾಗಿ ಫ್ಯಾರಡ್ನನ್ನು ಬಳಸಿಕೊಳ್ಳುತ್ತವೆ.
ನಮ್ಮ ವೆಬ್ಸೈಟ್ನಲ್ಲಿ ಅಬ್ರಾಡ್ ಪರಿವರ್ತನೆ ಸಾಧನದೊಂದಿಗೆ ಸಂವಹನ ನಡೆಸಲು, ಈ ಸರಳ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
ಬಳಸುವುದರ ಮೂಲಕ ನಮ್ಮ ಅಬ್ಫ್ರಾಡ್ ಪರಿವರ್ತನೆ ಸಾಧನ, ವಿದ್ಯುತ್ ಕೆಪಾಸಿಟನ್ಸ್ ಬಗ್ಗೆ ನಿಮ್ಮ ತಿಳುವಳಿಕೆಯನ್ನು ನೀವು ಹೆಚ್ಚಿಸಬಹುದು ಮತ್ತು ನಿಮ್ಮ ಯೋಜನೆಗಳಲ್ಲಿ ನಿಖರವಾದ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಬಹುದು.ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ಮತ್ತು ಪರಿಕರಗಳಿಗಾಗಿ, [inayam ನ ಘಟಕ ಪರಿವರ್ತಕ] (https://www.inayam.co/unit-converter/electrical_capacitance) ಗೆ ಭೇಟಿ ನೀಡಿ).
ಮೈಕ್ರೋಫರಾಡ್ (μF) ವಿದ್ಯುತ್ ಕೆಪಾಸಿಟನ್ಸ್ನ ಒಂದು ಘಟಕವಾಗಿದೆ, ಇದು ವಿದ್ಯುತ್ ಶುಲ್ಕವನ್ನು ಸಂಗ್ರಹಿಸುವ ಕೆಪಾಸಿಟರ್ ಸಾಮರ್ಥ್ಯವನ್ನು ಅಳೆಯುತ್ತದೆ.ಒಂದು ಮೈಕ್ರೋಫರಾಡ್ ಫ್ಯಾರಡ್ನ ಒಂದು-ಮಿಲಿಯನ್ (1 μF = 10^-6 f) ಗೆ ಸಮಾನವಾಗಿರುತ್ತದೆ.ಈ ಘಟಕವನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಸರ್ಕ್ಯೂಟ್ಗಳಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ, ಅಲ್ಲಿ ಕೆಪಾಸಿಟರ್ಗಳು ಫಿಲ್ಟರಿಂಗ್, ಸಮಯ ಮತ್ತು ಶಕ್ತಿ ಶೇಖರಣಾ ಅನ್ವಯಿಕೆಗಳಲ್ಲಿ ನಿರ್ಣಾಯಕ ಪಾತ್ರ ವಹಿಸುತ್ತವೆ.
ಮೈಕ್ರೋಫರಾಡ್ ಅಂತರರಾಷ್ಟ್ರೀಯ ಘಟಕಗಳ (ಎಸ್ಐ) ಭಾಗವಾಗಿದೆ ಮತ್ತು ಎಲೆಕ್ಟ್ರಿಕಲ್ ಎಂಜಿನಿಯರಿಂಗ್ ಮತ್ತು ಎಲೆಕ್ಟ್ರಾನಿಕ್ಸ್ನಲ್ಲಿ ವ್ಯಾಪಕವಾಗಿ ಗುರುತಿಸಲ್ಪಟ್ಟಿದೆ.ವಿವಿಧ ಅನ್ವಯಿಕೆಗಳು ಮತ್ತು ಕೈಗಾರಿಕೆಗಳಲ್ಲಿ ಅಳತೆಗಳಲ್ಲಿ ಸ್ಥಿರತೆ ಮತ್ತು ನಿಖರತೆಯನ್ನು ಖಾತರಿಪಡಿಸುವುದು ಅತ್ಯಗತ್ಯ.
ಕೆಪಾಸಿಟನ್ಸ್ ಪರಿಕಲ್ಪನೆಯು 18 ನೇ ಶತಮಾನದ ಆರಂಭದವರೆಗೆ, ಮೊದಲ ಕೆಪಾಸಿಟರ್ಗಳಲ್ಲಿ ಒಂದಾದ ಲೇಡನ್ ಜಾರ್ನ ಆವಿಷ್ಕಾರದೊಂದಿಗೆ.ತಂತ್ರಜ್ಞಾನ ಮುಂದುವರೆದಂತೆ, ಪ್ರಮಾಣೀಕೃತ ಘಟಕಗಳ ಅಗತ್ಯವು ಸ್ಪಷ್ಟವಾಯಿತು, ಇದು ಫರಾಡ್ ಅನ್ನು ಕೆಪಾಸಿಟನ್ಸ್ನ ಮೂಲ ಘಟಕವಾಗಿ ಅಳವಡಿಸಿಕೊಳ್ಳಲು ಕಾರಣವಾಯಿತು.ಮೈಕ್ರೋಫರಾಡ್ ಪ್ರಾಯೋಗಿಕ ಉಪಘಟಕವಾಗಿ ಹೊರಹೊಮ್ಮಿತು, ಇದರಿಂದಾಗಿ ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಘಟಕಗಳಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿ ಕಂಡುಬರುವ ಸಣ್ಣ ಕೆಪಾಸಿಟನ್ಸ್ ಮೌಲ್ಯಗಳೊಂದಿಗೆ ಕೆಲಸ ಮಾಡುವುದು ಸುಲಭವಾಗುತ್ತದೆ.
ಮೈಕ್ರೋಫರಾಡ್ಗಳ ಬಳಕೆಯನ್ನು ವಿವರಿಸಲು, 10 μF ನಲ್ಲಿ ರೇಟ್ ಮಾಡಲಾದ ಕೆಪಾಸಿಟರ್ ಅನ್ನು ಪರಿಗಣಿಸಿ.ನೀವು 30 μF ನ ಒಟ್ಟು ಕೆಪಾಸಿಟನ್ಸ್ ಅಗತ್ಯವಿರುವ ಸರ್ಕ್ಯೂಟ್ ಹೊಂದಿದ್ದರೆ, ನೀವು ಮೂರು 10 μF ಕೆಪಾಸಿಟರ್ಗಳನ್ನು ಸಮಾನಾಂತರವಾಗಿ ಸಂಪರ್ಕಿಸಬಹುದು.ಒಟ್ಟು ಕೆಪಾಸಿಟನ್ಸ್ ಹೀಗಿರುತ್ತದೆ: \ [ C_ {ಒಟ್ಟು} = C_1 + C_2 + C_3 = 10 μF + 10 μF + 10 μF = 30 μF ]
ವಿದ್ಯುತ್ ಸರಬರಾಜು, ಆಡಿಯೊ ಉಪಕರಣಗಳು ಮತ್ತು ಟೈಮಿಂಗ್ ಸರ್ಕ್ಯೂಟ್ಗಳು ಸೇರಿದಂತೆ ವಿವಿಧ ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಸಾಧನಗಳಲ್ಲಿ ಮೈಕ್ರೊಫರಾಡ್ಗಳನ್ನು ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ.ಈ ಘಟಕವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು ಹವ್ಯಾಸಿಗಳಿಗೆ ಸಮಾನವಾಗಿ ನಿರ್ಣಾಯಕವಾಗಿದೆ, ಏಕೆಂದರೆ ಇದು ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಘಟಕಗಳ ಸರಿಯಾದ ಕಾರ್ಯನಿರ್ವಹಣೆಯನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ.
ಮೈಕ್ರೋಫರಾಡ್ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಬಳಸಲು, ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
** ಮೈಕ್ರೊಫರಾಡ್ (μF) ಎಂದರೇನು? ** ಮೈಕ್ರೋಫರಾಡ್ ಎನ್ನುವುದು ಫ್ಯಾರಡ್ನ ಒಂದು ದಶಲಕ್ಷಕ್ಕೆ ಸಮಾನವಾದ ವಿದ್ಯುತ್ ಕೆಪಾಸಿಟನ್ಸ್ ಆಗಿದೆ, ಇದನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಸರ್ಕ್ಯೂಟ್ಗಳಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ.
** ನಾನು ಮೈಕ್ರೋಫರಾಡ್ಗಳನ್ನು ಫಾರಾಡ್ಗಳಾಗಿ ಪರಿವರ್ತಿಸುವುದು ಹೇಗೆ? ** ಮೈಕ್ರೋಫರಾಡ್ಗಳನ್ನು ಫಾರಾಡ್ಗಳಾಗಿ ಪರಿವರ್ತಿಸಲು, ಮೈಕ್ರೊಫರಾಡ್ಗಳಲ್ಲಿನ ಮೌಲ್ಯವನ್ನು 1,000,000 (1 μF = 10^-6 f) ನಿಂದ ವಿಂಗಡಿಸಿ.
** ಮೈಕ್ರೋಫರಾಡ್ಗಳು ಮತ್ತು ನ್ಯಾನೊಫರಾಡ್ಗಳ ನಡುವಿನ ಸಂಬಂಧವೇನು? ** ಒಂದು ಮೈಕ್ರೋಫರಾಡ್ 1,000 ನ್ಯಾನೊಫರಾಡ್ಗಳಿಗೆ ಸಮಾನವಾಗಿರುತ್ತದೆ (1 μF = 1,000 NF).
** ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಸರ್ಕ್ಯೂಟ್ಗಳಲ್ಲಿ ಕೆಪಾಸಿಟನ್ಸ್ ಏಕೆ ಮುಖ್ಯವಾಗಿದೆ? ** ವಿದ್ಯುತ್ ಶಕ್ತಿಯನ್ನು ಸಂಗ್ರಹಿಸಲು, ಫಿಲ್ಟರ್ ಮಾಡುವ ಸಂಕೇತಗಳು ಮತ್ತು ಸಮಯದ ಅಪ್ಲಿಕೇಶನ್ಗಳಿಗೆ ಕೆಪಾಸಿಟನ್ಸ್ ನಿರ್ಣಾಯಕವಾಗಿದೆ, ಇದು ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಸಾಧನಗಳ ಸರಿಯಾದ ಕಾರ್ಯನಿರ್ವಹಣೆಗೆ ಅಗತ್ಯವಾಗಿದೆ.
** ನಾನು ಯಾವುದೇ ಕೆಪಾಸಿಟನ್ಸ್ ಮೌಲ್ಯಕ್ಕಾಗಿ ಮೈಕ್ರೊಫರಾಡ್ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಬಳಸಬಹುದೇ? ** ಹೌದು, ಮೈಕ್ರೊಫರಾಡ್ ಪರಿವರ್ತಕ ಉಪಕರಣವನ್ನು ಯಾವುದೇ ಕೆಪಾಸಿಟನ್ಸ್ ಮೌಲ್ಯಕ್ಕೆ ಬಳಸಬಹುದು, ಇದು ಮೈಕ್ರೋಫರಾಡ್ಗಳು ಮತ್ತು ಇತರ ಕೆಪಾಸಿಟನ್ಸ್ ಘಟಕಗಳ ನಡುವೆ ಸುಲಭವಾಗಿ ಪರಿವರ್ತಿಸಲು ನಿಮಗೆ ಅನುವು ಮಾಡಿಕೊಡುತ್ತದೆ.
ಮೈಕ್ರೋಫರಾಡ್ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಬಳಸುವುದರ ಮೂಲಕ, ಎಲೆಕ್ಟ್ರಾನಿಕ್ಸ್ನಲ್ಲಿ ಕೆಪಾಸಿಟನ್ಸ್ ಮತ್ತು ಅದರ ಅಪ್ಲಿಕೇಶನ್ಗಳ ಬಗ್ಗೆ ನಿಮ್ಮ ತಿಳುವಳಿಕೆಯನ್ನು ನೀವು ಹೆಚ್ಚಿಸಬಹುದು.ಈ ಉಪಕರಣವು ಪರಿವರ್ತನೆಗಳನ್ನು ಸರಳಗೊಳಿಸುವುದಲ್ಲದೆ, ಬಳಕೆದಾರರು ತಮ್ಮ ಯೋಜನೆಗಳಲ್ಲಿ ತಿಳುವಳಿಕೆಯುಳ್ಳ ನಿರ್ಧಾರಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳಲು ಅಧಿಕಾರ ನೀಡುತ್ತದೆ, ಅಂತಿಮವಾಗಿ ಸಹ ಸುಧಾರಿತ ಕಾರ್ಯಕ್ಷಮತೆ ಮತ್ತು ದಕ್ಷತೆಗೆ ಒಳಪಡುವುದು.