1 G = 1 Ω/km
1 Ω/km = 1 G
ಉದಾಹರಣೆ:
15 ವಾಹಕತೆ ಅನ್ನು ಓಮ್ ಪ್ರತಿ ಕಿಲೋಮೀಟರ್ ಗೆ ಪರಿವರ್ತಿಸಿ:
15 G = 15 Ω/km
ವಾಹಕತೆ | ಓಮ್ ಪ್ರತಿ ಕಿಲೋಮೀಟರ್ |
---|---|
0.01 G | 0.01 Ω/km |
0.1 G | 0.1 Ω/km |
1 G | 1 Ω/km |
2 G | 2 Ω/km |
3 G | 3 Ω/km |
5 G | 5 Ω/km |
10 G | 10 Ω/km |
20 G | 20 Ω/km |
30 G | 30 Ω/km |
40 G | 40 Ω/km |
50 G | 50 Ω/km |
60 G | 60 Ω/km |
70 G | 70 Ω/km |
80 G | 80 Ω/km |
90 G | 90 Ω/km |
100 G | 100 Ω/km |
250 G | 250 Ω/km |
500 G | 500 Ω/km |
750 G | 750 Ω/km |
1000 G | 1,000 Ω/km |
10000 G | 10,000 Ω/km |
100000 G | 100,000 Ω/km |
** g ** ಚಿಹ್ನೆಯಿಂದ ಪ್ರತಿನಿಧಿಸಲ್ಪಟ್ಟ ನಡವಳಿಕೆ, ವಸ್ತುವಿನ ಮೂಲಕ ವಿದ್ಯುತ್ ಎಷ್ಟು ಸುಲಭವಾಗಿ ಹರಿಯುತ್ತದೆ ಎಂಬುದರ ಅಳತೆಯಾಗಿದೆ.ಇದು ಪ್ರತಿರೋಧದ ಪರಸ್ಪರ ಮತ್ತು ಸೀಮೆನ್ಸ್ (ಗಳಲ್ಲಿ) ನಲ್ಲಿ ವ್ಯಕ್ತವಾಗುತ್ತದೆ.ಸರ್ಕ್ಯೂಟ್ ವಿನ್ಯಾಸ ಮತ್ತು ವಿಶ್ಲೇಷಣೆಯಲ್ಲಿ ನಿರ್ಣಾಯಕ ಪಾತ್ರ ವಹಿಸುವುದರಿಂದ ವಿದ್ಯುತ್ ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು ತಂತ್ರಜ್ಞರಿಗೆ ನಡವಳಿಕೆಯನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಅತ್ಯಗತ್ಯ.
ಇಂಟರ್ನ್ಯಾಷನಲ್ ಸಿಸ್ಟಮ್ ಆಫ್ ಯುನಿಟ್ಸ್ (ಎಸ್ಐ) ನಲ್ಲಿ ವಾಹಕತೆಯನ್ನು ಪ್ರಮಾಣೀಕರಿಸಲಾಗಿದೆ, ಅಲ್ಲಿ 1 ಸೀಮೆನ್ಗಳನ್ನು ಕಂಡಕ್ಟರ್ನ ನಡವಳಿಕೆ ಎಂದು ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿದೆ, ಇದರಲ್ಲಿ 1 ಆಂಪಿಯರ್ನ ಪ್ರವಾಹವು 1 ವೋಲ್ಟ್ ವೋಲ್ಟೇಜ್ನ ಅಡಿಯಲ್ಲಿ ಹರಿಯುತ್ತದೆ.ಈ ಪ್ರಮಾಣೀಕರಣವು ವಿವಿಧ ಅಪ್ಲಿಕೇಶನ್ಗಳು ಮತ್ತು ಕೈಗಾರಿಕೆಗಳಲ್ಲಿ ಸ್ಥಿರವಾದ ಅಳತೆಗಳನ್ನು ಅನುಮತಿಸುತ್ತದೆ.
ವಾಹಕದ ಪರಿಕಲ್ಪನೆಯು ಶತಮಾನಗಳಿಂದ ವಿಕಸನಗೊಂಡಿದೆ, ಆಧುನಿಕ ಎಲೆಕ್ಟ್ರಿಕಲ್ ಎಂಜಿನಿಯರಿಂಗ್ಗೆ ದಾರಿ ಮಾಡಿಕೊಡುವ ವಿದ್ಯುತ್ನಲ್ಲಿ ಆರಂಭಿಕ ಅಧ್ಯಯನಗಳು.ನಡವಳಿಕೆ ಮತ್ತು ಪ್ರತಿರೋಧದ ನಡುವಿನ ಸಂಬಂಧವನ್ನು 19 ನೇ ಶತಮಾನದಲ್ಲಿ formal ಪಚಾರಿಕಗೊಳಿಸಲಾಯಿತು, ಇದು ಓಮ್ನ ಕಾನೂನಿನ ಅಭಿವೃದ್ಧಿಗೆ ಕಾರಣವಾಯಿತು, ಇದು ಪ್ರವಾಹವು ವೋಲ್ಟೇಜ್ಗೆ ನೇರವಾಗಿ ಅನುಪಾತದಲ್ಲಿರುತ್ತದೆ ಮತ್ತು ಪ್ರತಿರೋಧಕ್ಕೆ ವಿಲೋಮಾನುಪಾತವಾಗಿದೆ ಎಂದು ಹೇಳುತ್ತದೆ.
ನಡವಳಿಕೆಯನ್ನು ವಿವರಿಸಲು, 10 ಓಮ್ಗಳ ಪ್ರತಿರೋಧದೊಂದಿಗೆ ಸರ್ಕ್ಯೂಟ್ ಅನ್ನು ಪರಿಗಣಿಸಿ.ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ನಡವಳಿಕೆಯನ್ನು (ಜಿ) ಲೆಕ್ಕಹಾಕಬಹುದು:
[ G = \frac{1}{R} ]
ಇಲ್ಲಿ ಆರ್ ಎಂಬುದು ಓಮ್ಸ್ನಲ್ಲಿನ ಪ್ರತಿರೋಧ.ಹೀಗಾಗಿ, 10 ಓಮ್ಗಳ ಪ್ರತಿರೋಧಕ್ಕಾಗಿ:
[ G = \frac{1}{10} = 0.1 , S ]
ಇದರರ್ಥ ಸರ್ಕ್ಯೂಟ್ 0.1 ಸೀಮೆನ್ಸ್ ನಡವಳಿಕೆಯನ್ನು ಹೊಂದಿದೆ.
ವಿದ್ಯುತ್ ಎಂಜಿನಿಯರಿಂಗ್, ಭೌತಶಾಸ್ತ್ರ ಮತ್ತು ವಿದ್ಯುತ್ ವ್ಯವಸ್ಥೆಗಳು ಪ್ರಚಲಿತದಲ್ಲಿರುವ ವಿವಿಧ ಕೈಗಾರಿಕೆಗಳಲ್ಲಿ ನಡವಳಿಕೆಯನ್ನು ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ.ಸರ್ಕ್ಯೂಟ್ ಕಾರ್ಯಕ್ಷಮತೆಯನ್ನು ವಿಶ್ಲೇಷಿಸಲು, ಸುರಕ್ಷತೆಯನ್ನು ಖಾತರಿಪಡಿಸಲು ಮತ್ತು ಶಕ್ತಿಯ ದಕ್ಷತೆಯನ್ನು ಉತ್ತಮಗೊಳಿಸಲು ಇದು ಸಹಾಯ ಮಾಡುತ್ತದೆ.
ನಮ್ಮ ವೆಬ್ಸೈಟ್ನಲ್ಲಿ ವಾಹಕ ಸಾಧನವನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಬಳಸಲು, ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
** ನಡವಳಿಕೆ ಎಂದರೇನು? ** ಸೀಮೆನ್ಸ್ (ಗಳಲ್ಲಿ) ನಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸಿದ ವಸ್ತುವಿನ ಮೂಲಕ ವಿದ್ಯುತ್ ಎಷ್ಟು ಸುಲಭವಾಗಿ ಹರಿಯುತ್ತದೆ ಎಂಬುದರ ಅಳತೆಯಾಗಿದೆ.
** ನಾನು ಪ್ರತಿರೋಧವನ್ನು ನಡವಳಿಕೆಗೆ ಹೇಗೆ ಪರಿವರ್ತಿಸುವುದು? ** \ (G = \ frac {1} {r} ) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ನೀವು ಪ್ರತಿರೋಧವನ್ನು ವಾಹಕತೆಗೆ ಪರಿವರ್ತಿಸಬಹುದು, ಇಲ್ಲಿ r ಎಂಬುದು ಓಮ್ಗಳಲ್ಲಿನ ಪ್ರತಿರೋಧ.
** ನಡವಳಿಕೆಯ ಘಟಕಗಳು ಯಾವುವು? ** ವಾಹಕದ ಪ್ರಮಾಣಿತ ಘಟಕವೆಂದರೆ ಸೀಮೆನ್ಸ್ (ಗಳು), ಇದು ಓಮ್ಸ್ನ ಪರಸ್ಪರ ಸಂಬಂಧವಾಗಿದೆ.
** ಎಲೆಕ್ಟ್ರಿಕಲ್ ಎಂಜಿನಿಯರಿಂಗ್ನಲ್ಲಿ ನಡವಳಿಕೆ ಏಕೆ ಮುಖ್ಯವಾಗಿದೆ? ** ಸರ್ಕ್ಯೂಟ್ ಕಾರ್ಯಕ್ಷಮತೆಯನ್ನು ವಿಶ್ಲೇಷಿಸಲು, ಸುರಕ್ಷತೆಯನ್ನು ಖಾತರಿಪಡಿಸುವುದು ಮತ್ತು ವಿದ್ಯುತ್ ವ್ಯವಸ್ಥೆಗಳಲ್ಲಿ ಶಕ್ತಿಯ ದಕ್ಷತೆಯನ್ನು ಉತ್ತಮಗೊಳಿಸಲು ನಡವಳಿಕೆ ನಿರ್ಣಾಯಕವಾಗಿದೆ.
** ನಾನು ಯಾವುದೇ ಪ್ರತಿರೋಧ ಮೌಲ್ಯಕ್ಕಾಗಿ ವಾಹಕ ಸಾಧನವನ್ನು ಬಳಸಬಹುದೇ? ** ಹೌದು, ವಾಹಕ ಸಾಧನವನ್ನು ಯಾವುದೇ ಪ್ರತಿರೋಧ ಮೌಲ್ಯಕ್ಕೆ ಬಳಸಬಹುದು, ಇದು ಅನುಗುಣವಾದ ನಡವಳಿಕೆಯನ್ನು ಸುಲಭವಾಗಿ ಲೆಕ್ಕಹಾಕಲು ನಿಮಗೆ ಅನುವು ಮಾಡಿಕೊಡುತ್ತದೆ.
ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗಾಗಿ ಮತ್ತು ವಾಹಕ ಸಾಧನವನ್ನು ಪ್ರವೇಶಿಸಲು, [ಇನಾಯಂನ ವಾಹಕ ಕ್ಯಾಲ್ಕುಲೇಟರ್] (https://www.inayam.co/unit-converter/electrical_resistance) ಗೆ ಭೇಟಿ ನೀಡಿ).ಈ ಉಪಕರಣವನ್ನು ಬಳಸುವುದರ ಮೂಲಕ, ನೀವು ವಿದ್ಯುತ್ ವ್ಯವಸ್ಥೆಗಳ ಬಗ್ಗೆ ನಿಮ್ಮ ತಿಳುವಳಿಕೆಯನ್ನು ಹೆಚ್ಚಿಸಬಹುದು ಮತ್ತು ನಿಮ್ಮ ಎಂಜಿನಿಯರಿಂಗ್ ಕೌಶಲ್ಯಗಳನ್ನು ಸುಧಾರಿಸಬಹುದು.
ಪ್ರತಿ ಕಿಲೋಮೀಟರ್ (Ω/ಕಿಮೀ) ಒಂದು ಮಾಪನದ ಒಂದು ಘಟಕವಾಗಿದ್ದು, ಇದು ಒಂದು ಕಿಲೋಮೀಟರ್ ಅಂತರದಲ್ಲಿ ವಿದ್ಯುತ್ ಪ್ರತಿರೋಧವನ್ನು ಪ್ರಮಾಣೀಕರಿಸುತ್ತದೆ.ಎಲೆಕ್ಟ್ರಿಕಲ್ ಎಂಜಿನಿಯರಿಂಗ್ ಮತ್ತು ದೂರಸಂಪರ್ಕದಲ್ಲಿ ಈ ಮೆಟ್ರಿಕ್ ಅವಶ್ಯಕವಾಗಿದೆ, ಅಲ್ಲಿ ಉದ್ದವಾದ ಕೇಬಲ್ಗಳು ಮತ್ತು ತಂತಿಗಳಲ್ಲಿ ಪ್ರತಿರೋಧವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ದಕ್ಷ ಇಂಧನ ಪ್ರಸರಣಕ್ಕೆ ನಿರ್ಣಾಯಕವಾಗಿದೆ.
ಓಹ್ಮ್ನ ಘಟಕವನ್ನು ಅಂತರರಾಷ್ಟ್ರೀಯ ಘಟಕಗಳ (ಎಸ್ಐ) ಪ್ರಮಾಣೀಕರಿಸಲಾಗಿದೆ, ಇದು ವಿದ್ಯುತ್ ಪ್ರತಿರೋಧವನ್ನು ವೋಲ್ಟೇಜ್ನ ಪ್ರವಾಹಕ್ಕೆ ಅನುಪಾತ ಎಂದು ವ್ಯಾಖ್ಯಾನಿಸುತ್ತದೆ.ಪ್ರತಿ ಕಿಲೋಮೀಟರಿಗೆ ಓಮ್ ಈ ಮಾನದಂಡದಿಂದ ಹುಟ್ಟಿಕೊಂಡಿದೆ, ಇದು ಎಂಜಿನಿಯರ್ಗಳು ಕಂಡಕ್ಟರ್ನ ಉದ್ದಕ್ಕೆ ಸಂಬಂಧಿಸಿದಂತೆ ಪ್ರತಿರೋಧವನ್ನು ವ್ಯಕ್ತಪಡಿಸಲು ಅನುವು ಮಾಡಿಕೊಡುತ್ತದೆ.ಈ ಪ್ರಮಾಣೀಕರಣವು ವಿವಿಧ ಅನ್ವಯಿಕೆಗಳು ಮತ್ತು ಕೈಗಾರಿಕೆಗಳಲ್ಲಿ ಸ್ಥಿರತೆ ಮತ್ತು ನಿಖರತೆಯನ್ನು ಖಾತ್ರಿಗೊಳಿಸುತ್ತದೆ.
ವಿದ್ಯುತ್ ಪ್ರತಿರೋಧದ ಪರಿಕಲ್ಪನೆಯು 19 ನೇ ಶತಮಾನದ ಆರಂಭದಲ್ಲಿದೆ, ಜಾರ್ಜ್ ಸೈಮನ್ ಓಮ್ ಓಮ್ನ ಕಾನೂನನ್ನು ರೂಪಿಸಿದ ಮೊದಲ ವ್ಯಕ್ತಿ.ಕಾಲಾನಂತರದಲ್ಲಿ, ವಿದ್ಯುತ್ ವ್ಯವಸ್ಥೆಗಳು ಹೆಚ್ಚು ಸಂಕೀರ್ಣವಾಗುತ್ತಿದ್ದಂತೆ, ಅಂತರದ ಮೇಲೆ ಪ್ರತಿರೋಧವನ್ನು ಅಳೆಯುವ ಅಗತ್ಯವು ಹೊರಹೊಮ್ಮಿತು, ಇದು ಪ್ರತಿ ಕಿಲೋಮೀಟರಿಗೆ ಓಮ್ ನಂತಹ ಘಟಕಗಳನ್ನು ಅಳವಡಿಸಿಕೊಳ್ಳಲು ಕಾರಣವಾಗುತ್ತದೆ.ಆಧುನಿಕ ವಿದ್ಯುತ್ ವ್ಯವಸ್ಥೆಗಳ ಅಭಿವೃದ್ಧಿಯಲ್ಲಿ ಈ ವಿಕಾಸವು ನಿರ್ಣಾಯಕವಾಗಿದೆ, ಇದು ಉತ್ತಮ ವಿನ್ಯಾಸ ಮತ್ತು ದಕ್ಷತೆಗೆ ಅನುವು ಮಾಡಿಕೊಡುತ್ತದೆ.
ಪ್ರತಿ ಕಿಲೋಮೀಟರಿಗೆ ಓಮ್ ಬಳಕೆಯನ್ನು ವಿವರಿಸಲು, 0.02 Ω/ಕಿಮೀ ಪ್ರತಿರೋಧದೊಂದಿಗೆ ತಾಮ್ರದ ತಂತಿಯನ್ನು ಪರಿಗಣಿಸಿ.ಈ ತಂತಿಯ 500 ಮೀಟರ್ ಉದ್ದವನ್ನು ನೀವು ಹೊಂದಿದ್ದರೆ, ಒಟ್ಟು ಪ್ರತಿರೋಧವನ್ನು ಈ ಕೆಳಗಿನಂತೆ ಲೆಕ್ಕಹಾಕಬಹುದು:
ದೂರಸಂಪರ್ಕ, ವಿದ್ಯುತ್ ಎಂಜಿನಿಯರಿಂಗ್ ಮತ್ತು ವಿದ್ಯುತ್ ವಿತರಣೆ ಸೇರಿದಂತೆ ವಿವಿಧ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಪ್ರತಿ ಕಿಲೋಮೀಟರಿಗೆ ಓಮ್ ಅನ್ನು ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ.ಇದು ಎಂಜಿನಿಯರ್ಗಳು ಮತ್ತು ತಂತ್ರಜ್ಞರು ಕೇಬಲ್ಗಳು ಮತ್ತು ತಂತಿಗಳ ಕಾರ್ಯಕ್ಷಮತೆಯನ್ನು ನಿರ್ಣಯಿಸಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ, ವಿದ್ಯುತ್ ವ್ಯವಸ್ಥೆಗಳು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಮತ್ತು ಸುರಕ್ಷಿತವಾಗಿ ಕಾರ್ಯನಿರ್ವಹಿಸುತ್ತವೆ ಎಂದು ಖಚಿತಪಡಿಸುತ್ತದೆ.
ಪ್ರತಿ ಕಿಲೋಮೀಟರ್ ಸಾಧನವನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಬಳಸಲು, ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
ಪ್ರತಿ ಕಿಲೋಮೀಟರ್ ಉಪಕರಣವನ್ನು ಬಳಸುವುದರ ಮೂಲಕ, ಬಳಕೆದಾರರು ವಿದ್ಯುತ್ ಪ್ರತಿರೋಧದ ಬಗ್ಗೆ ಅಮೂಲ್ಯವಾದ ಒಳನೋಟಗಳನ್ನು ಪಡೆಯಬಹುದು, ತಮ್ಮ ಯೋಜನೆಗಳಲ್ಲಿ ಈ ನಿರ್ಣಾಯಕ ಅಳತೆಯ ತಿಳುವಳಿಕೆಯನ್ನು ಮತ್ತು ಅನ್ವಯವನ್ನು ಹೆಚ್ಚಿಸಬಹುದು.