1 Pa = 0.008 Torr
1 Torr = 133.322 Pa
ಉದಾಹರಣೆ:
15 ನಿಶ್ಚಲತೆ ಒತ್ತಡ ಅನ್ನು ಟಾರ್ (ವಾತಾವರಣದ ಒತ್ತಡ) ಗೆ ಪರಿವರ್ತಿಸಿ:
15 Pa = 0.113 Torr
ನಿಶ್ಚಲತೆ ಒತ್ತಡ | ಟಾರ್ (ವಾತಾವರಣದ ಒತ್ತಡ) |
---|---|
0.01 Pa | 7.5006e-5 Torr |
0.1 Pa | 0.001 Torr |
1 Pa | 0.008 Torr |
2 Pa | 0.015 Torr |
3 Pa | 0.023 Torr |
5 Pa | 0.038 Torr |
10 Pa | 0.075 Torr |
20 Pa | 0.15 Torr |
30 Pa | 0.225 Torr |
40 Pa | 0.3 Torr |
50 Pa | 0.375 Torr |
60 Pa | 0.45 Torr |
70 Pa | 0.525 Torr |
80 Pa | 0.6 Torr |
90 Pa | 0.675 Torr |
100 Pa | 0.75 Torr |
250 Pa | 1.875 Torr |
500 Pa | 3.75 Torr |
750 Pa | 5.625 Torr |
1000 Pa | 7.501 Torr |
10000 Pa | 75.006 Torr |
100000 Pa | 750.064 Torr |
ಪ್ಯಾಸ್ಕಲ್ಗಳಲ್ಲಿ (ಪಿಎ) ಅಳೆಯಲಾದ ನಿಶ್ಚಲತೆಯ ಒತ್ತಡವು ದ್ರವ ಡೈನಾಮಿಕ್ಸ್ನಲ್ಲಿ ಒಂದು ನಿರ್ಣಾಯಕ ಪರಿಕಲ್ಪನೆಯಾಗಿದೆ.ಇದು ವಿಶ್ರಾಂತಿಗೆ ತಂದರೆ (ಶಾಖ ವರ್ಗಾವಣೆ ಇಲ್ಲದೆ) ದ್ರವವು ಪಡೆಯುವ ಒತ್ತಡವನ್ನು ಇದು ಪ್ರತಿನಿಧಿಸುತ್ತದೆ.ವಿವಿಧ ಎಂಜಿನಿಯರಿಂಗ್ ಅಪ್ಲಿಕೇಶನ್ಗಳಲ್ಲಿ, ವಿಶೇಷವಾಗಿ ವಾಯುಬಲವಿಜ್ಞಾನ ಮತ್ತು ಹೈಡ್ರೊಡೈನಾಮಿಕ್ಸ್ನಲ್ಲಿ ಈ ಮಾಪನವು ಅವಶ್ಯಕವಾಗಿದೆ, ಅಲ್ಲಿ ವಿಭಿನ್ನ ಪರಿಸ್ಥಿತಿಗಳಲ್ಲಿ ದ್ರವಗಳ ನಡವಳಿಕೆಯನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಅತ್ಯಗತ್ಯ.
ನಿಶ್ಚಲತೆಯ ಒತ್ತಡವನ್ನು ಅಂತರರಾಷ್ಟ್ರೀಯ ಘಟಕಗಳ (ಎಸ್ಐ) ಪ್ರಮಾಣೀಕರಿಸಲಾಗಿದೆ ಮತ್ತು ಇದನ್ನು ಪ್ಯಾಸ್ಕಲ್ಗಳಲ್ಲಿ (ಪಿಎ) ವ್ಯಕ್ತಪಡಿಸಲಾಗುತ್ತದೆ.ಈ ಘಟಕವನ್ನು ಬಲ ಮತ್ತು ಪ್ರದೇಶದ ಮೂಲ ಎಸ್ಐ ಘಟಕಗಳಿಂದ ಪಡೆಯಲಾಗಿದೆ, ಅಲ್ಲಿ 1 ಪ್ಯಾಸ್ಕಲ್ ಪ್ರತಿ ಚದರ ಮೀಟರ್ಗೆ 1 ನ್ಯೂಟನ್ಗೆ ಸಮನಾಗಿರುತ್ತದೆ.ಒತ್ತಡ ಮಾಪನಗಳ ಪ್ರಮಾಣೀಕರಣವು ವೈಜ್ಞಾನಿಕ ಮತ್ತು ಎಂಜಿನಿಯರಿಂಗ್ ವಿಭಾಗಗಳಲ್ಲಿ ಸ್ಥಿರತೆ ಮತ್ತು ನಿಖರತೆಯನ್ನು ಅನುಮತಿಸುತ್ತದೆ.
ನಿಶ್ಚಲತೆಯ ಒತ್ತಡದ ಪರಿಕಲ್ಪನೆಯು ಪ್ರಾರಂಭದಿಂದಲೂ ಗಮನಾರ್ಹವಾಗಿ ವಿಕಸನಗೊಂಡಿದೆ.ಐತಿಹಾಸಿಕವಾಗಿ, ದ್ರವ ಡೈನಾಮಿಕ್ಸ್ನ ಅಧ್ಯಯನವನ್ನು 18 ನೇ ಶತಮಾನದಲ್ಲಿ ಬರ್ನೌಲ್ಲಿ ಮತ್ತು ಯೂಲರ್ನಂತಹ ವಿಜ್ಞಾನಿಗಳ ಕೃತಿಗಳಿಗೆ ಕಂಡುಹಿಡಿಯಬಹುದು.ಚಲಿಸುವ ದ್ರವಗಳಲ್ಲಿ ಒತ್ತಡದ ವ್ಯತ್ಯಾಸಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಅವರ ಕೊಡುಗೆಗಳು ಅಡಿಪಾಯ ಹಾಕಿದವು.ವರ್ಷಗಳಲ್ಲಿ, ತಂತ್ರಜ್ಞಾನ ಮತ್ತು ಕಂಪ್ಯೂಟೇಶನಲ್ ಫ್ಲೂಯಿಡ್ ಡೈನಾಮಿಕ್ಸ್ನಲ್ಲಿನ ಪ್ರಗತಿಗಳು ನೈಜ-ಪ್ರಪಂಚದ ಸನ್ನಿವೇಶಗಳಲ್ಲಿ ನಿಶ್ಚಲತೆಯ ಒತ್ತಡವನ್ನು ಅಳೆಯುವ ಮತ್ತು ಅನ್ವಯಿಸುವ ನಮ್ಮ ಸಾಮರ್ಥ್ಯವನ್ನು ಹೆಚ್ಚಿಸಿವೆ.
ನಿಶ್ಚಲತೆಯ ಒತ್ತಡವನ್ನು ಲೆಕ್ಕಹಾಕಲು, ಒಬ್ಬರು ಬರ್ನೌಲ್ಲಿ ಸಮೀಕರಣವನ್ನು ಬಳಸಬಹುದು, ಇದು ದ್ರವದ ಒತ್ತಡ, ವೇಗ ಮತ್ತು ಎತ್ತರವನ್ನು ಸಂಬಂಧಿಸಿದೆ.ಉದಾಹರಣೆಗೆ, ಒಂದು ದ್ರವವು 20 ಮೀ/ಸೆ ವೇಗವನ್ನು ಹೊಂದಿದ್ದರೆ ಮತ್ತು ಸ್ಥಿರ ಒತ್ತಡವು 100,000 ಪಿಎ ಆಗಿದ್ದರೆ, ನಿಶ್ಚಲತೆಯ ಒತ್ತಡವನ್ನು ಈ ಕೆಳಗಿನಂತೆ ಲೆಕ್ಕಹಾಕಬಹುದು:
[ P_0 = P + \frac{1}{2} \rho v^2 ]
ಎಲ್ಲಿ:
ಮೌಲ್ಯಗಳನ್ನು ಪ್ಲಗ್ ಮಾಡುವುದು:
[ P_0 = 100,000 + \frac{1}{2} \times 1.225 \times (20)^2 ] [ P_0 = 100,000 + 490 ] [ P_0 = 100,490 Pa ]
ಏರೋಸ್ಪೇಸ್ ಎಂಜಿನಿಯರಿಂಗ್, ಹವಾಮಾನಶಾಸ್ತ್ರ ಮತ್ತು ಎಚ್ವಿಎಸಿ ವ್ಯವಸ್ಥೆಗಳು ಸೇರಿದಂತೆ ವಿವಿಧ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ನಿಶ್ಚಲತೆಯ ಒತ್ತಡವನ್ನು ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ.ನಿಶ್ಚಲತೆಯ ಒತ್ತಡವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಎಂಜಿನಿಯರ್ಗಳು ಗಾಳಿಯ ಹರಿವನ್ನು ಉತ್ತಮಗೊಳಿಸುವ ಮೂಲಕ ಮತ್ತು ವಾಹನಗಳಲ್ಲಿ ಡ್ರ್ಯಾಗ್ ಅನ್ನು ಕಡಿಮೆ ಮಾಡುವ ಮೂಲಕ ಹೆಚ್ಚು ಪರಿಣಾಮಕಾರಿ ವ್ಯವಸ್ಥೆಗಳನ್ನು ವಿನ್ಯಾಸಗೊಳಿಸಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ.
ನಮ್ಮ ವೆಬ್ಸೈಟ್ನಲ್ಲಿ ನಿಶ್ಚಲತೆಯ ಒತ್ತಡದ ಸಾಧನದೊಂದಿಗೆ ಸಂವಹನ ನಡೆಸಲು, ಬಳಕೆದಾರರು ಈ ಸರಳ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಬಹುದು:
ನಿಶ್ಚಲತೆಯ ಒತ್ತಡದ ಉಪಕರಣದ ಬಳಕೆಯನ್ನು ಉತ್ತಮಗೊಳಿಸಲು, ಈ ಕೆಳಗಿನ ಸಲಹೆಗಳನ್ನು ಪರಿಗಣಿಸಿ:
ನಮ್ಮ ನಿಶ್ಚಲತೆಯ ಒತ್ತಡ ಸಾಧನವನ್ನು ಬಳಸುವುದರ ಮೂಲಕ, ದ್ರವ ಡೈನಾಮಿಕ್ಸ್ ಬಗ್ಗೆ ನಿಮ್ಮ ತಿಳುವಳಿಕೆಯನ್ನು ನೀವು ಹೆಚ್ಚಿಸಬಹುದು ಮತ್ತು ನಿಮ್ಮ ಎಂಜಿನಿಯರಿಂಗ್ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಸುಧಾರಿಸಬಹುದು.ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗಾಗಿ ಮತ್ತು ಉಪಕರಣವನ್ನು ಪ್ರವೇಶಿಸಲು, [ಇನಾಯಂನ ನಿಶ್ಚಲತೆಯ ಒತ್ತಡ ಪರಿವರ್ತಕ] (https://www.inayam.co/unit-converter/pressure) ಗೆ ಭೇಟಿ ನೀಡಿ.
ಟಾರ್ರ್, ಇದನ್ನು ಸಾಮಾನ್ಯವಾಗಿ "ಟಾರ್ರ್" ಎಂದು ಸೂಚಿಸಲಾಗುತ್ತದೆ, ಇದು ವಾತಾವರಣದ (ಎಟಿಎಂ) 1/760 ಎಂದು ವ್ಯಾಖ್ಯಾನಿಸಲಾದ ಒತ್ತಡದ ಒಂದು ಘಟಕವಾಗಿದೆ.ಇದನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ವಿವಿಧ ವೈಜ್ಞಾನಿಕ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ, ವಿಶೇಷವಾಗಿ ನಿರ್ವಾತ ಮಾಪನಗಳು ಮತ್ತು ಅನಿಲ ಒತ್ತಡದಲ್ಲಿ.ಭೌತಶಾಸ್ತ್ರ, ರಸಾಯನಶಾಸ್ತ್ರ ಮತ್ತು ಎಂಜಿನಿಯರಿಂಗ್ನಲ್ಲಿನ ವೃತ್ತಿಪರರಿಗೆ TORR ಅನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಅತ್ಯಗತ್ಯ, ಏಕೆಂದರೆ ಇದು ಒತ್ತಡದ ಮಟ್ಟವನ್ನು ವ್ಯಕ್ತಪಡಿಸಲು ಪ್ರಮಾಣೀಕೃತ ಮಾರ್ಗವನ್ನು ಒದಗಿಸುತ್ತದೆ.
ಪಾದರಸದ ಭೌತಿಕ ಗುಣಲಕ್ಷಣಗಳ ಆಧಾರದ ಮೇಲೆ ಟಾರ್ರ್ ಪ್ರಮಾಣೀಕರಿಸಲ್ಪಟ್ಟಿದೆ.ನಿರ್ದಿಷ್ಟವಾಗಿ ಹೇಳುವುದಾದರೆ, ಗುರುತ್ವಾಕರ್ಷಣೆಯಿಂದಾಗಿ ಪ್ರಮಾಣಿತ ವೇಗವರ್ಧನೆಯಲ್ಲಿ 1 ಮಿಲಿಮೀಟರ್ ಎತ್ತರವಿರುವ ಪಾದರಸದ ಕಾಲಮ್ನಿಂದ ಉಂಟಾಗುವ ಒತ್ತಡ ಎಂದು ಇದನ್ನು ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿದೆ.ಈ ಪ್ರಮಾಣೀಕರಣವು ವಿಭಿನ್ನ ವೈಜ್ಞಾನಿಕ ಮತ್ತು ಕೈಗಾರಿಕಾ ಅನ್ವಯಿಕೆಗಳಲ್ಲಿ ಸ್ಥಿರವಾದ ಅಳತೆಗಳನ್ನು ಅನುಮತಿಸುತ್ತದೆ.
17 ನೇ ಶತಮಾನದಲ್ಲಿ ಮಾಪಕವನ್ನು ಕಂಡುಹಿಡಿದ ಇಟಾಲಿಯನ್ ವಿಜ್ಞಾನಿ ಇವಾಂಜೆಲಿಸ್ಟಾ ಟೊರಿಸೆಲ್ಲಿ ಅವರ ಹೆಸರನ್ನು ಟೋರ್ಗೆ ಹೆಸರಿಸಲಾಯಿತು.ಅವರ ಕೆಲಸವು ವಾತಾವರಣದ ಒತ್ತಡ ಮತ್ತು ನಿರ್ವಾತವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಅಡಿಪಾಯ ಹಾಕಿತು.ವರ್ಷಗಳಲ್ಲಿ, ಟಾರ್ರ್ ಒತ್ತಡ ಮಾಪನದ ವ್ಯಾಪಕವಾಗಿ ಅಂಗೀಕರಿಸಲ್ಪಟ್ಟ ಘಟಕವಾಗಿ ವಿಕಸನಗೊಂಡಿದೆ, ವಿಶೇಷವಾಗಿ ನಿಖರವಾದ ಒತ್ತಡ ನಿಯಂತ್ರಣದ ಅಗತ್ಯವಿರುವ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ.
ಟಾರ್ ಅನ್ನು ವಾತಾವರಣಕ್ಕೆ ಪರಿವರ್ತಿಸಲು, ನೀವು ಈ ಕೆಳಗಿನ ಸೂತ್ರವನ್ನು ಬಳಸಬಹುದು: [ \text{Pressure (atm)} = \frac{\text{Pressure (Torr)}}{760} ]
ಉದಾಹರಣೆಗೆ, ನೀವು 760 ಟೋರ್ ಒತ್ತಡವನ್ನು ಹೊಂದಿದ್ದರೆ, ವಾತಾವರಣಕ್ಕೆ ಪರಿವರ್ತನೆ ಹೀಗಿರುತ್ತದೆ: [ \text{Pressure (atm)} = \frac{760}{760} = 1 \text{ atm} ]
ಟೋರ್ ಅನ್ನು ಪ್ರಾಥಮಿಕವಾಗಿ ವೈಜ್ಞಾನಿಕ ಸಂಶೋಧನೆ, ಎಂಜಿನಿಯರಿಂಗ್ ಮತ್ತು ಒತ್ತಡ ಮಾಪನಗಳು ನಿರ್ಣಾಯಕವಾಗಿರುವ ವಿವಿಧ ಕೈಗಾರಿಕೆಗಳಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ.ನಿರ್ವಾತ ವ್ಯವಸ್ಥೆಗಳು, ಗ್ಯಾಸ್ ಕ್ರೊಮ್ಯಾಟೋಗ್ರಫಿ ಮತ್ತು ಹವಾಮಾನಶಾಸ್ತ್ರವನ್ನು ಒಳಗೊಂಡ ಅನ್ವಯಗಳಲ್ಲಿ ಇದು ವಿಶೇಷವಾಗಿ ಉಪಯುಕ್ತವಾಗಿದೆ.
ವಾತಾವರಣ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ವಾತಾವರಣಕ್ಕೆ ಬಳಸಲು, ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ: 1. 2. ** ಇನ್ಪುಟ್ ಒತ್ತಡದ ಮೌಲ್ಯ **: ನೀವು ಪರಿವರ್ತಿಸಲು ಬಯಸುವ ಟೋರ್ನಲ್ಲಿ ಒತ್ತಡದ ಮೌಲ್ಯವನ್ನು ನಮೂದಿಸಿ. 3. ** ಪರಿವರ್ತನೆ ಆಯ್ಕೆಮಾಡಿ **: ವಾತಾವರಣಕ್ಕೆ (ಎಟಿಎಂ) ಪರಿವರ್ತನೆ ಆಯ್ಕೆಯನ್ನು ಆರಿಸಿ. 4. ** ಫಲಿತಾಂಶಗಳನ್ನು ವೀಕ್ಷಿಸಿ **: ಉಪಕರಣವು ಸ್ವಯಂಚಾಲಿತವಾಗಿ ವಾತಾವರಣದಲ್ಲಿ ಸಮಾನ ಒತ್ತಡವನ್ನು ಲೆಕ್ಕಹಾಕುತ್ತದೆ ಮತ್ತು ಪ್ರದರ್ಶಿಸುತ್ತದೆ.
ಟೋರ್ ಅನ್ನು ವಾತಾವರಣ ಪರಿವರ್ತಕ ಸಾಧನಕ್ಕೆ ಬಳಸುವುದರ ಮೂಲಕ, ಬಳಕೆದಾರರು ನಿಖರವಾದ ಒತ್ತಡ ಮಾಪನಗಳನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಬಹುದು, ವೈಜ್ಞಾನಿಕ ಮತ್ತು ಕೈಗಾರಿಕಾ ಅನ್ವಯಿಕೆಗಳಲ್ಲಿ ತಮ್ಮ ಕೆಲಸವನ್ನು ಹೆಚ್ಚಿಸಬಹುದು.ಈ ಸಾಧನವು ಪರಿವರ್ತನೆಗಳನ್ನು ಸರಳಗೊಳಿಸುವುದಲ್ಲದೆ, ಒತ್ತಡದ ಘಟಕಗಳ ಆಳವಾದ ತಿಳುವಳಿಕೆಗೆ ಕೊಡುಗೆ ನೀಡುತ್ತದೆ, ಅಂತಿಮವಾಗಿ ವಿವಿಧ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ದಕ್ಷತೆ ಮತ್ತು ನಿಖರತೆಯನ್ನು ಸುಧಾರಿಸುತ್ತದೆ.