1 γ = 1 t½
1 t½ = 1 γ
ಉದಾಹರಣೆ:
15 ಗಾಮಾ ವಿಕಿರಣ ಅನ್ನು ಅರ್ಧ ಜೀವನ ಗೆ ಪರಿವರ್ತಿಸಿ:
15 γ = 15 t½
ಗಾಮಾ ವಿಕಿರಣ | ಅರ್ಧ ಜೀವನ |
---|---|
0.01 γ | 0.01 t½ |
0.1 γ | 0.1 t½ |
1 γ | 1 t½ |
2 γ | 2 t½ |
3 γ | 3 t½ |
5 γ | 5 t½ |
10 γ | 10 t½ |
20 γ | 20 t½ |
30 γ | 30 t½ |
40 γ | 40 t½ |
50 γ | 50 t½ |
60 γ | 60 t½ |
70 γ | 70 t½ |
80 γ | 80 t½ |
90 γ | 90 t½ |
100 γ | 100 t½ |
250 γ | 250 t½ |
500 γ | 500 t½ |
750 γ | 750 t½ |
1000 γ | 1,000 t½ |
10000 γ | 10,000 t½ |
100000 γ | 100,000 t½ |
Amb ಚಿಹ್ನೆಯಿಂದ ಪ್ರತಿನಿಧಿಸಲ್ಪಡುವ ಗಾಮಾ ವಿಕಿರಣವು ಹೆಚ್ಚಿನ ಶಕ್ತಿ ಮತ್ತು ಸಣ್ಣ ತರಂಗಾಂತರದ ವಿದ್ಯುತ್ಕಾಂತೀಯ ವಿಕಿರಣದ ಒಂದು ರೂಪವಾಗಿದೆ.ವಿಕಿರಣಶೀಲ ಕೊಳೆಯುವ ಸಮಯದಲ್ಲಿ ಇದು ಹೊರಸೂಸಲ್ಪಡುತ್ತದೆ ಮತ್ತು ಇದು ವಿಕಿರಣದ ಅತ್ಯಂತ ನುಗ್ಗುವ ರೂಪಗಳಲ್ಲಿ ಒಂದಾಗಿದೆ.ಪರಮಾಣು ಭೌತಶಾಸ್ತ್ರ, ವೈದ್ಯಕೀಯ ಚಿತ್ರಣ ಮತ್ತು ವಿಕಿರಣ ಚಿಕಿತ್ಸೆಯಂತಹ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಗಾಮಾ ವಿಕಿರಣವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ನಿರ್ಣಾಯಕವಾಗಿದೆ.
ಗಾಮಾ ವಿಕಿರಣವನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ಸೀವರ್ಟ್ಸ್ (ಎಸ್ವಿ), ಗ್ರೇಸ್ (ಜಿ), ಮತ್ತು ಬೆಕ್ವೆರೆಲ್ಸ್ (ಬಿಕ್ಯೂ) ನಂತಹ ಘಟಕಗಳಲ್ಲಿ ಅಳೆಯಲಾಗುತ್ತದೆ.ಈ ಘಟಕಗಳು ವಿವಿಧ ಅಪ್ಲಿಕೇಶನ್ಗಳಲ್ಲಿ ಅಳತೆಗಳನ್ನು ಪ್ರಮಾಣೀಕರಿಸಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ, ಡೇಟಾ ವರದಿ ಮಾಡುವಿಕೆ ಮತ್ತು ಸುರಕ್ಷತಾ ಮೌಲ್ಯಮಾಪನಗಳಲ್ಲಿ ಸ್ಥಿರತೆಯನ್ನು ಖಾತ್ರಿಪಡಿಸುತ್ತದೆ.
ಗಾಮಾ ವಿಕಿರಣದ ಅಧ್ಯಯನವು 20 ನೇ ಶತಮಾನದ ಆರಂಭದಲ್ಲಿ ಹೆನ್ರಿ ಬೆಕ್ವೆರೆಲ್ ಅವರಿಂದ ವಿಕಿರಣಶೀಲತೆಯ ಆವಿಷ್ಕಾರದೊಂದಿಗೆ ಪ್ರಾರಂಭವಾಯಿತು ಮತ್ತು ಮೇರಿ ಕ್ಯೂರಿಯಂತಹ ವಿಜ್ಞಾನಿಗಳು ಹೆಚ್ಚಿಸಿದರು.ದಶಕಗಳಲ್ಲಿ, ತಂತ್ರಜ್ಞಾನದ ಪ್ರಗತಿಗಳು medicine ಷಧ, ಉದ್ಯಮ ಮತ್ತು ಸಂಶೋಧನೆಯಲ್ಲಿ ಗಾಮಾ ವಿಕಿರಣದ ಹೆಚ್ಚು ನಿಖರವಾದ ಅಳತೆಗಳು ಮತ್ತು ಅನ್ವಯಗಳಿಗೆ ಅವಕಾಶ ಮಾಡಿಕೊಟ್ಟಿವೆ.
ಉದಾಹರಣೆಗೆ, ವಿಕಿರಣಶೀಲ ಮೂಲವು ಗಾಮಾ ವಿಕಿರಣದ 1000 ಬೆಕ್ವೆರೆಲ್ಗಳನ್ನು (ಬಿಕ್ಯೂ) ಹೊರಸೂಸಿದರೆ, ಇದರರ್ಥ ಸೆಕೆಂಡಿಗೆ 1000 ವಿಘಟನೆಗಳು ಸಂಭವಿಸುತ್ತವೆ.ಹೀರಿಕೊಳ್ಳುವ ಪ್ರಮಾಣವನ್ನು ಅಳೆಯುವ ಗ್ರೇಸ್ (ಜಿ) ಆಗಿ ಪರಿವರ್ತಿಸಲು, ಹೊರಸೂಸಲ್ಪಟ್ಟ ವಿಕಿರಣದ ಶಕ್ತಿಯನ್ನು ಮತ್ತು ಹೀರಿಕೊಳ್ಳುವ ವಸ್ತುಗಳ ದ್ರವ್ಯರಾಶಿಯನ್ನು ತಿಳಿದುಕೊಳ್ಳಬೇಕು.
ಗಾಮಾ ವಿಕಿರಣ ಘಟಕಗಳನ್ನು ವಿವಿಧ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ, ಇದರಲ್ಲಿ ಕ್ಯಾನ್ಸರ್ ಚಿಕಿತ್ಸೆಗಾಗಿ ಆರೋಗ್ಯ ರಕ್ಷಣೆ, ವಿಕಿರಣ ಮಟ್ಟಗಳಿಗೆ ಪರಿಸರ ಮೇಲ್ವಿಚಾರಣೆ ಮತ್ತು ಸುರಕ್ಷತಾ ಮೌಲ್ಯಮಾಪನಗಳಿಗಾಗಿ ಪರಮಾಣು ಶಕ್ತಿ ಸೇರಿವೆ.ಈ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಕೆಲಸ ಮಾಡುವ ವೃತ್ತಿಪರರಿಗೆ ಈ ಘಟಕಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಅತ್ಯಗತ್ಯ.
ಗಾಮಾ ವಿಕಿರಣ ಘಟಕ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಬಳಸಿಕೊಳ್ಳಲು, ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
** 1.ಗಾಮಾ ವಿಕಿರಣ ಎಂದರೇನು? ** ಗಾಮಾ ವಿಕಿರಣವು ವಿಕಿರಣಶೀಲ ಕೊಳೆಯುವಿಕೆಯ ಸಮಯದಲ್ಲಿ ಹೊರಸೂಸಲ್ಪಟ್ಟ ಹೆಚ್ಚಿನ ಶಕ್ತಿಯ ವಿದ್ಯುತ್ಕಾಂತೀಯ ವಿಕಿರಣವಾಗಿದ್ದು, ಅದರ ನುಗ್ಗುವ ಶಕ್ತಿಯಿಂದ ನಿರೂಪಿಸಲ್ಪಟ್ಟಿದೆ.
** 2.ಗಾಮಾ ವಿಕಿರಣವನ್ನು ಹೇಗೆ ಅಳೆಯಲಾಗುತ್ತದೆ? ** ಗಾಮಾ ವಿಕಿರಣವನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ಸೀವರ್ಟ್ಸ್ (ಎಸ್ವಿ), ಗ್ರೇಸ್ (ಜಿ), ಮತ್ತು ಬೆಕ್ವೆರೆಲ್ಸ್ (ಬಿಕ್ಯೂ) ನಂತಹ ಘಟಕಗಳಲ್ಲಿ ಅಳೆಯಲಾಗುತ್ತದೆ, ಇದು ಮಾಪನದ ಸಂದರ್ಭವನ್ನು ಅವಲಂಬಿಸಿರುತ್ತದೆ.
** 3.ಗಾಮಾ ವಿಕಿರಣದ ಅನ್ವಯಗಳು ಯಾವುವು? ** ಗಾಮಾ ವಿಕಿರಣವನ್ನು ವೈದ್ಯಕೀಯ ಚಿತ್ರಣ, ಕ್ಯಾನ್ಸರ್ ಚಿಕಿತ್ಸೆ ಮತ್ತು ವಿಕಿರಣ ಮಟ್ಟಗಳಿಗೆ ಪರಿಸರ ಮೇಲ್ವಿಚಾರಣೆ ಸೇರಿದಂತೆ ವಿವಿಧ ಅನ್ವಯಿಕೆಗಳಲ್ಲಿ ಬಳಸಲಾಗುತ್ತದೆ.
** 4.ಗಾಮಾ ವಿಕಿರಣ ಘಟಕಗಳನ್ನು ನಾನು ಹೇಗೆ ಪರಿವರ್ತಿಸುವುದು? ** ಇನ್ಪುಟ್ ಮತ್ತು output ಟ್ಪುಟ್ ಘಟಕಗಳನ್ನು ಆರಿಸಿ ಮತ್ತು ಅಪೇಕ್ಷಿತ ಮೌಲ್ಯವನ್ನು ನಮೂದಿಸುವ ಮೂಲಕ ನೀವು ನಮ್ಮ ಗಾಮಾ ವಿಕಿರಣ ಘಟಕ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಬಳಸಿಕೊಂಡು ಗಾಮಾ ವಿಕಿರಣ ಘಟಕಗಳನ್ನು ಪರಿವರ್ತಿಸಬಹುದು.
** 5.ಗಾಮಾ ವಿಕಿರಣವನ್ನು ನಿಖರವಾಗಿ ಅಳೆಯುವುದು ಏಕೆ ಮುಖ್ಯ? ** ವೈದ್ಯಕೀಯ, ಕೈಗಾರಿಕಾ ಮತ್ತು ಪರಿಸರ ಸಂದರ್ಭಗಳಲ್ಲಿ ಸುರಕ್ಷತೆಯನ್ನು ಖಾತ್ರಿಪಡಿಸಿಕೊಳ್ಳಲು ಗಾಮಾ ವಿಕಿರಣದ ನಿಖರ ಮಾಪನವು ನಿರ್ಣಾಯಕವಾಗಿದೆ, ಏಕೆಂದರೆ ಇದು ಮಾನ್ಯತೆ ಅಪಾಯಗಳು ಮತ್ತು ಸುರಕ್ಷತಾ ಮಾನದಂಡಗಳ ಅನುಸರಣೆಯನ್ನು ನಿರ್ಣಯಿಸಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ.
ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗಾಗಿ ಮತ್ತು ಗಾಮಾ ವಿಕಿರಣ ಘಟಕ ಪರಿವರ್ತಕವನ್ನು ಪ್ರವೇಶಿಸಲು, [inayam ನ ವಿಕಿರಣಶೀಲತೆ ಪರಿವರ್ತಕ] (https://www.inayam.co/unit-converter/radioactivity) ಗೆ ಭೇಟಿ ನೀಡಿ.ಗಾಮಾ ವಿಕಿರಣ ಮಾಪನಗಳ ನಿಮ್ಮ ತಿಳುವಳಿಕೆ ಮತ್ತು ಅನ್ವಯವನ್ನು ಹೆಚ್ಚಿಸಲು ಈ ಉಪಕರಣವನ್ನು ವಿನ್ಯಾಸಗೊಳಿಸಲಾಗಿದೆ, ಅಂತಿಮವಾಗಿ ಸಂಬಂಧಿತ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ನಿಮ್ಮ ದಕ್ಷತೆ ಮತ್ತು ಸುರಕ್ಷತೆಯನ್ನು ಸುಧಾರಿಸುತ್ತದೆ.
ಅರ್ಧ-ಜೀವಿತಾವಧಿಯು (ಚಿಹ್ನೆ: ಟಿ) ವಿಕಿರಣಶೀಲತೆ ಮತ್ತು ಪರಮಾಣು ಭೌತಶಾಸ್ತ್ರದಲ್ಲಿ ಒಂದು ಮೂಲಭೂತ ಪರಿಕಲ್ಪನೆಯಾಗಿದ್ದು, ವಿಕಿರಣಶೀಲ ಪರಮಾಣುಗಳ ಅರ್ಧದಷ್ಟು ಕೊಳೆಯಲು ಅಗತ್ಯವಾದ ಸಮಯವನ್ನು ಪ್ರತಿನಿಧಿಸುತ್ತದೆ.ವಿಕಿರಣಶೀಲ ವಸ್ತುಗಳ ಸ್ಥಿರತೆ ಮತ್ತು ದೀರ್ಘಾಯುಷ್ಯವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಈ ಮಾಪನವು ನಿರ್ಣಾಯಕವಾಗಿದೆ, ಇದು ಪರಮಾಣು medicine ಷಧ, ಪರಿಸರ ವಿಜ್ಞಾನ ಮತ್ತು ರೇಡಿಯೊಮೆಟ್ರಿಕ್ ಡೇಟಿಂಗ್ನಂತಹ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಪ್ರಮುಖ ಅಂಶವಾಗಿದೆ.
ಅರ್ಧ-ಜೀವಿತಾವಧಿಯನ್ನು ವಿವಿಧ ಐಸೊಟೋಪ್ಗಳಲ್ಲಿ ಪ್ರಮಾಣೀಕರಿಸಲಾಗಿದೆ, ಪ್ರತಿ ಐಸೊಟೋಪ್ ವಿಶಿಷ್ಟವಾದ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯನ್ನು ಹೊಂದಿರುತ್ತದೆ.ಉದಾಹರಣೆಗೆ, ಕಾರ್ಬನ್ -14 ಸುಮಾರು 5,730 ವರ್ಷಗಳ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯನ್ನು ಹೊಂದಿದ್ದರೆ, ಯುರೇನಿಯಂ -238 ಸುಮಾರು 4.5 ಶತಕೋಟಿ ವರ್ಷಗಳ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯನ್ನು ಹೊಂದಿದೆ.ಈ ಪ್ರಮಾಣೀಕರಣವು ವಿಜ್ಞಾನಿಗಳು ಮತ್ತು ಸಂಶೋಧಕರಿಗೆ ವಿಭಿನ್ನ ಐಸೊಟೋಪ್ಗಳ ಕೊಳೆತ ದರಗಳನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಹೋಲಿಸಲು ಅನುವು ಮಾಡಿಕೊಡುತ್ತದೆ.
ವಿಜ್ಞಾನಿಗಳು ವಿಕಿರಣಶೀಲ ಕೊಳೆಯುವಿಕೆಯ ಸ್ವರೂಪವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಪ್ರಾರಂಭಿಸಿದಾಗ ಅರ್ಧ-ಜೀವನದ ಪರಿಕಲ್ಪನೆಯನ್ನು 20 ನೇ ಶತಮಾನದ ಆರಂಭದಲ್ಲಿ ಮೊದಲು ಪರಿಚಯಿಸಲಾಯಿತು.ಈ ಪದವು ವಿಕಸನಗೊಂಡಿದೆ, ಮತ್ತು ಇಂದು ಇದನ್ನು ರಸಾಯನಶಾಸ್ತ್ರ, ಭೌತಶಾಸ್ತ್ರ ಮತ್ತು ಜೀವಶಾಸ್ತ್ರ ಸೇರಿದಂತೆ ವಿವಿಧ ವೈಜ್ಞಾನಿಕ ವಿಭಾಗಗಳಲ್ಲಿ ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ.ಅರ್ಧ-ಜೀವಿತಾವಧಿಯನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡುವ ಸಾಮರ್ಥ್ಯವು ವಿಕಿರಣಶೀಲ ವಸ್ತುಗಳು ಮತ್ತು ಅವುಗಳ ಅನ್ವಯಗಳ ಬಗ್ಗೆ ನಮ್ಮ ತಿಳುವಳಿಕೆಯನ್ನು ಕ್ರಾಂತಿಗೊಳಿಸಿದೆ.
ನಿರ್ದಿಷ್ಟ ಸಂಖ್ಯೆಯ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯ ನಂತರ ವಿಕಿರಣಶೀಲ ವಸ್ತುವಿನ ಉಳಿದ ಪ್ರಮಾಣವನ್ನು ಲೆಕ್ಕಹಾಕಲು, ನೀವು ಸೂತ್ರವನ್ನು ಬಳಸಬಹುದು:
[ N = N_0 \times \left(\frac{1}{2}\right)^n ]
ಎಲ್ಲಿ:
ಉದಾಹರಣೆಗೆ, ನೀವು 100 ಗ್ರಾಂ ವಿಕಿರಣಶೀಲ ಐಸೊಟೋಪ್ನೊಂದಿಗೆ 3 ವರ್ಷಗಳ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯೊಂದಿಗೆ ಪ್ರಾರಂಭಿಸಿದರೆ, 6 ವರ್ಷಗಳ ನಂತರ (ಇದು 2 ಅರ್ಧ-ಜೀವಂತವಾಗಿದೆ), ಉಳಿದ ಪ್ರಮಾಣವು ಹೀಗಿರುತ್ತದೆ:
[ N = 100 \times \left(\frac{1}{2}\right)^2 = 100 \times \frac{1}{4} = 25 \text{ grams} ]
ಅರ್ಧ-ಜೀವಿತಾವಧಿಯನ್ನು ವಿವಿಧ ಅಪ್ಲಿಕೇಶನ್ಗಳಲ್ಲಿ ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ, ಅವುಗಳೆಂದರೆ:
ಅರ್ಧ-ಜೀವ ಸಾಧನವನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಬಳಸಲು, ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
** ಕಾರ್ಬನ್ -14 ರ ಅರ್ಧ-ಜೀವಿತೆ ಏನು? ** -ಕಾರ್ಬನ್ -14 ರ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯು ಸುಮಾರು 5,730 ವರ್ಷಗಳು.
** ಅನೇಕ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯ ನಂತರ ಉಳಿದ ಪ್ರಮಾಣವನ್ನು ನಾನು ಹೇಗೆ ಲೆಕ್ಕ ಹಾಕುವುದು? ** .
** ನಾನು ಈ ಸಾಧನವನ್ನು ಯಾವುದೇ ವಿಕಿರಣಶೀಲ ಐಸೊಟೋಪ್ಗಾಗಿ ಬಳಸಬಹುದೇ? **
ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗಾಗಿ ಮತ್ತು ಅರ್ಧ-ಜೀವಿತಾವಧಿಯನ್ನು ಪ್ರವೇಶಿಸಲು, [ಇನಾಯಂನ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯ ಕ್ಯಾಲ್ಕುಲೇಟರ್] (https://www.inayam.co/unit-converter/radioactivity) ಗೆ ಭೇಟಿ ನೀಡಿ.ವಿಕಿರಣಶೀಲ ಕೊಳೆಯುವಿಕೆಯ ಬಗ್ಗೆ ನಿಮ್ಮ ತಿಳುವಳಿಕೆಯನ್ನು ಹೆಚ್ಚಿಸಲು ಈ ಉಪಕರಣವನ್ನು ವಿನ್ಯಾಸಗೊಳಿಸಲಾಗಿದೆ ಮತ್ತು ವಿವಿಧ ವೈಜ್ಞಾನಿಕ ಅನ್ವಯಿಕೆಗಳಿಗೆ ಸಹಾಯ ಮಾಡಿ.