1 RD = 1 β
1 β = 1 RD
ಉದಾಹರಣೆ:
15 ವಿಕಿರಣ ಕ್ಷಯ ಅನ್ನು ಬೀಟಾ ಕಣಗಳು ಗೆ ಪರಿವರ್ತಿಸಿ:
15 RD = 15 β
ವಿಕಿರಣ ಕ್ಷಯ | ಬೀಟಾ ಕಣಗಳು |
---|---|
0.01 RD | 0.01 β |
0.1 RD | 0.1 β |
1 RD | 1 β |
2 RD | 2 β |
3 RD | 3 β |
5 RD | 5 β |
10 RD | 10 β |
20 RD | 20 β |
30 RD | 30 β |
40 RD | 40 β |
50 RD | 50 β |
60 RD | 60 β |
70 RD | 70 β |
80 RD | 80 β |
90 RD | 90 β |
100 RD | 100 β |
250 RD | 250 β |
500 RD | 500 β |
750 RD | 750 β |
1000 RD | 1,000 β |
10000 RD | 10,000 β |
100000 RD | 100,000 β |
** ವಿಕಿರಣ ಕೊಳೆತ ** ಉಪಕರಣವನ್ನು ** rd ** ಎಂದು ಸಂಕೇತಿಸಲಾಗಿದೆ, ಇದು ವಿಕಿರಣಶೀಲತೆ ಮತ್ತು ಪರಮಾಣು ಭೌತಶಾಸ್ತ್ರದೊಂದಿಗೆ ಕೆಲಸ ಮಾಡುವ ಯಾರಿಗಾದರೂ ಅತ್ಯಗತ್ಯ ಸಂಪನ್ಮೂಲವಾಗಿದೆ.ವಿಕಿರಣ ಕೊಳೆತಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ವಿವಿಧ ಘಟಕಗಳನ್ನು ಪರಿವರ್ತಿಸಲು ಮತ್ತು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಈ ಸಾಧನವು ಬಳಕೆದಾರರಿಗೆ ಅನುವು ಮಾಡಿಕೊಡುತ್ತದೆ, ವೈಜ್ಞಾನಿಕ ಸಂಶೋಧನೆ, ಶಿಕ್ಷಣ ಮತ್ತು ಉದ್ಯಮದ ಅನ್ವಯಿಕೆಗಳಲ್ಲಿ ನಿಖರವಾದ ಲೆಕ್ಕಾಚಾರಗಳು ಮತ್ತು ವಿಶ್ಲೇಷಣೆಗಳನ್ನು ಸುಗಮಗೊಳಿಸುತ್ತದೆ.
ವಿಕಿರಣ ಕೊಳೆತವು ವಿಕಿರಣವನ್ನು ಹೊರಸೂಸುವ ಮೂಲಕ ಅಸ್ಥಿರ ಪರಮಾಣು ನ್ಯೂಕ್ಲಿಯಸ್ಗಳು ಶಕ್ತಿಯನ್ನು ಕಳೆದುಕೊಳ್ಳುವ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಸೂಚಿಸುತ್ತದೆ.ಪರಮಾಣು medicine ಷಧ, ವಿಕಿರಣಶಾಸ್ತ್ರದ ಸುರಕ್ಷತೆ ಮತ್ತು ಪರಿಸರ ವಿಜ್ಞಾನದಂತಹ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಈ ವಿದ್ಯಮಾನವು ನಿರ್ಣಾಯಕವಾಗಿದೆ.ವಿಕಿರಣಶೀಲ ಐಸೊಟೋಪ್ಗಳ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯನ್ನು ಅಳೆಯಲು ಮತ್ತು ಕಾಲಾನಂತರದಲ್ಲಿ ಅವುಗಳ ನಡವಳಿಕೆಯನ್ನು ting ಹಿಸಲು ವಿಕಿರಣ ಕೊಳೆತವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಅತ್ಯಗತ್ಯ.
ವಿಕಿರಣ ಕೊಳೆತವನ್ನು ಅಳೆಯುವ ಪ್ರಮಾಣಿತ ಘಟಕಗಳಲ್ಲಿ ಸೆಕೆಂಡಿಗೆ ಒಂದು ಕೊಳೆತವನ್ನು ಪ್ರತಿನಿಧಿಸುವ ಬೆಕ್ವೆರೆಲ್ (ಬಿಕ್ಯೂ) ಮತ್ತು ಕ್ಯೂರಿ (ಸಿಐ), ಇದು ಹಳೆಯ ಘಟಕವಾಗಿದ್ದು, ಇದು ಸೆಕೆಂಡಿಗೆ 3.7 × 10^10 ಕೊಳೆಯುತ್ತದೆ.ವಿಕಿರಣ ಕೊಳೆತ ಸಾಧನವು ಈ ಘಟಕಗಳನ್ನು ಪ್ರಮಾಣೀಕರಿಸುತ್ತದೆ, ಬಳಕೆದಾರರು ಅವುಗಳ ನಡುವೆ ಸಲೀಸಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು ಎಂದು ಖಚಿತಪಡಿಸುತ್ತದೆ.
1896 ರಲ್ಲಿ ಹೆನ್ರಿ ಬೆಕ್ವೆರೆಲ್ ಅವರಿಂದ ವಿಕಿರಣಶೀಲತೆಯ ಆವಿಷ್ಕಾರದಿಂದ ವಿಕಿರಣ ಕೊಳೆಯುವಿಕೆಯ ಪರಿಕಲ್ಪನೆಯು ಗಮನಾರ್ಹವಾಗಿ ವಿಕಸನಗೊಂಡಿದೆ. ಮೇರಿ ಕ್ಯೂರಿ ಮತ್ತು ಅರ್ನೆಸ್ಟ್ ರುದರ್ಫೋರ್ಡ್ ಅವರಂತಹ ವಿಜ್ಞಾನಿಗಳ ಆರಂಭಿಕ ಅಧ್ಯಯನಗಳು ಪರಮಾಣು ಕೊಳೆತ ಪ್ರಕ್ರಿಯೆಗಳ ಬಗ್ಗೆ ನಮ್ಮ ಪ್ರಸ್ತುತ ತಿಳುವಳಿಕೆಗೆ ಅಡಿಪಾಯ ಹಾಕಿದೆ.ಇಂದು, ತಂತ್ರಜ್ಞಾನದಲ್ಲಿನ ಪ್ರಗತಿಗಳು ವಿವಿಧ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ನಿಖರವಾದ ಅಳತೆಗಳು ಮತ್ತು ವಿಕಿರಣ ಕೊಳೆಯುವಿಕೆಯ ಅನ್ವಯಗಳನ್ನು ಶಕ್ತಗೊಳಿಸಿದೆ.
ಉದಾಹರಣೆಗೆ, ನೀವು 5 ವರ್ಷಗಳ ಅರ್ಧ-ಜೀವಿತಾವಧಿಯೊಂದಿಗೆ ಮಾದರಿಯನ್ನು ಹೊಂದಿದ್ದರೆ, ಮತ್ತು ನೀವು 100 ಗ್ರಾಂ ವಿಕಿರಣಶೀಲ ಐಸೊಟೋಪ್ನೊಂದಿಗೆ ಪ್ರಾರಂಭಿಸಿದರೆ, 5 ವರ್ಷಗಳ ನಂತರ, ನೀವು 50 ಗ್ರಾಂ ಉಳಿದಿರುವಿರಿ.ಮತ್ತೊಂದು 5 ವರ್ಷಗಳ ನಂತರ (ಒಟ್ಟು 10 ವರ್ಷಗಳು), ನಿಮಗೆ 25 ಗ್ರಾಂ ಉಳಿದಿದೆ.ವಿಕಿರಣ ಕೊಳೆತ ಸಾಧನವು ಈ ಮೌಲ್ಯಗಳನ್ನು ತ್ವರಿತವಾಗಿ ಮತ್ತು ನಿಖರವಾಗಿ ಲೆಕ್ಕಹಾಕಲು ನಿಮಗೆ ಸಹಾಯ ಮಾಡುತ್ತದೆ.
ವಿಕಿರಣ ಕೊಳೆಯುವಿಕೆಯ ಘಟಕಗಳನ್ನು ವೈದ್ಯಕೀಯ ಅನ್ವಯಿಕೆಗಳಲ್ಲಿ ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುತ್ತದೆ, ಉದಾಹರಣೆಗೆ ಇಮೇಜಿಂಗ್ ತಂತ್ರಗಳಲ್ಲಿ ವಿಕಿರಣಶೀಲ ಟ್ರೇಸರ್ಗಳ ಪ್ರಮಾಣವನ್ನು ನಿರ್ಧರಿಸುವುದು.ಪರಿಸರ ಮೇಲ್ವಿಚಾರಣೆ, ಪರಮಾಣು ಇಂಧನ ಉತ್ಪಾದನೆ ಮತ್ತು ಕಣ ಭೌತಶಾಸ್ತ್ರದಲ್ಲಿ ಸಂಶೋಧನೆಯಲ್ಲೂ ಅವು ನಿರ್ಣಾಯಕವಾಗಿವೆ.
ವಿಕಿರಣ ಕೊಳೆತ ಸಾಧನವನ್ನು ಬಳಸಲು, ಈ ಸರಳ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
ವಿಕಿರಣ ಕೊಳೆತ ಸಾಧನವನ್ನು ಬಳಸುವುದರ ಮೂಲಕ, ವಿಕಿರಣಶೀಲತೆ ಮತ್ತು ಅದರ ಅಪ್ಲಿಕೇಶನ್ಗಳ ಬಗ್ಗೆ ನಿಮ್ಮ ತಿಳುವಳಿಕೆಯನ್ನು ನೀವು ಹೆಚ್ಚಿಸಬಹುದು, ಅಂತಿಮವಾಗಿ ಕ್ಷೇತ್ರದಲ್ಲಿ ನಿಮ್ಮ ಸಂಶೋಧನೆ ಮತ್ತು ಪ್ರಾಯೋಗಿಕ ಫಲಿತಾಂಶಗಳನ್ನು ಸುಧಾರಿಸಬಹುದು.
Detil ಚಿಹ್ನೆಯಿಂದ ಸೂಚಿಸಲಾದ ಬೀಟಾ ಕಣಗಳು, ಬೀಟಾ ಕೊಳೆಯುವ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಕೆಲವು ರೀತಿಯ ವಿಕಿರಣಶೀಲ ನ್ಯೂಕ್ಲಿಯಸ್ಗಳಿಂದ ಹೊರಸೂಸುವ ಹೆಚ್ಚಿನ ಶಕ್ತಿ, ಹೆಚ್ಚಿನ ವೇಗದ ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಅಥವಾ ಪಾಸಿಟ್ರಾನ್ಗಳಾಗಿವೆ.ಪರಮಾಣು ಭೌತಶಾಸ್ತ್ರ, ವಿಕಿರಣ ಚಿಕಿತ್ಸೆ ಮತ್ತು ವಿಕಿರಣಶಾಸ್ತ್ರದ ಸುರಕ್ಷತೆಯಂತಹ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಬೀಟಾ ಕಣಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವುದು ಅತ್ಯಗತ್ಯ.
ಬೀಟಾ ಕಣಗಳ ಮಾಪನವನ್ನು ಚಟುವಟಿಕೆಯ ದೃಷ್ಟಿಯಿಂದ ಪ್ರಮಾಣೀಕರಿಸಲಾಗುತ್ತದೆ, ಇದನ್ನು ಸಾಮಾನ್ಯವಾಗಿ ಬೆಕ್ವೆರೆಲ್ಸ್ (ಬಿಕ್ಯೂ) ಅಥವಾ ಕ್ಯುರೀಸ್ (ಸಿಐ) ನಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸಲಾಗುತ್ತದೆ.ಈ ಪ್ರಮಾಣೀಕರಣವು ವಿವಿಧ ವೈಜ್ಞಾನಿಕ ಮತ್ತು ವೈದ್ಯಕೀಯ ವಿಭಾಗಗಳಲ್ಲಿ ವಿಕಿರಣಶೀಲತೆಯ ಮಟ್ಟಗಳ ಸ್ಥಿರ ಸಂವಹನ ಮತ್ತು ತಿಳುವಳಿಕೆಯನ್ನು ಅನುಮತಿಸುತ್ತದೆ.
ವಿಜ್ಞಾನಿಗಳು ವಿಕಿರಣಶೀಲತೆಯ ಸ್ವರೂಪವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಪ್ರಾರಂಭಿಸಿದಾಗ 20 ನೇ ಶತಮಾನದ ಆರಂಭದಲ್ಲಿ ಬೀಟಾ ಕಣಗಳ ಪರಿಕಲ್ಪನೆಯನ್ನು ಮೊದಲು ಪರಿಚಯಿಸಲಾಯಿತು.ಗಮನಾರ್ಹ ವ್ಯಕ್ತಿಗಳಾದ ಅರ್ನೆಸ್ಟ್ ರುದರ್ಫೋರ್ಡ್ ಮತ್ತು ಜೇಮ್ಸ್ ಚಾಡ್ವಿಕ್ ಬೀಟಾ ಕೊಳೆಯುವಿಕೆಯ ಅಧ್ಯಯನಕ್ಕೆ ಗಮನಾರ್ಹವಾಗಿ ಕೊಡುಗೆ ನೀಡಿದ್ದು, ಎಲೆಕ್ಟ್ರಾನ್ ಆವಿಷ್ಕಾರ ಮತ್ತು ಕ್ವಾಂಟಮ್ ಮೆಕ್ಯಾನಿಕ್ಸ್ ಅಭಿವೃದ್ಧಿಗೆ ಕಾರಣವಾಯಿತು.ದಶಕಗಳಲ್ಲಿ, ತಂತ್ರಜ್ಞಾನದಲ್ಲಿನ ಪ್ರಗತಿಗಳು medicine ಷಧ ಮತ್ತು ಉದ್ಯಮದಲ್ಲಿ ಬೀಟಾ ಕಣಗಳ ಹೆಚ್ಚು ನಿಖರವಾದ ಅಳತೆಗಳು ಮತ್ತು ಅನ್ವಯಗಳಿಗೆ ಅವಕಾಶ ಮಾಡಿಕೊಟ್ಟಿವೆ.
ಬೀಟಾ ಕಣ ಚಟುವಟಿಕೆಯ ಪರಿವರ್ತನೆಯನ್ನು ವಿವರಿಸಲು, 500 BQ ಬೀಟಾ ವಿಕಿರಣವನ್ನು ಹೊರಸೂಸುವ ಮಾದರಿಯನ್ನು ಪರಿಗಣಿಸಿ.ಇದನ್ನು ಕ್ಯೂರಿಗಳಿಗೆ ಪರಿವರ್ತಿಸಲು, ನೀವು ಪರಿವರ್ತನೆ ಅಂಶವನ್ನು ಬಳಸುತ್ತೀರಿ: 1 ಸಿಐ = 3.7 × 10^10 BQ. ಹೀಗಾಗಿ, 500 BQ * (1 CI / 3.7 × 10^10 BQ) = 1.35 × 10^-9 ci.
ವಿವಿಧ ಅಪ್ಲಿಕೇಶನ್ಗಳಲ್ಲಿ ಬೀಟಾ ಕಣಗಳು ನಿರ್ಣಾಯಕವಾಗಿವೆ, ಅವುಗಳೆಂದರೆ:
ಬೀಟಾ ಕಣಗಳ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಬಳಸಿಕೊಳ್ಳಲು, ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ: 1. 2. ** ಇನ್ಪುಟ್ ಮೌಲ್ಯಗಳು **: ಗೊತ್ತುಪಡಿಸಿದ ಇನ್ಪುಟ್ ಕ್ಷೇತ್ರದಲ್ಲಿ ನೀವು ಪರಿವರ್ತಿಸಲು ಬಯಸುವ ಬೀಟಾ ಕಣಗಳ ಪ್ರಮಾಣವನ್ನು ನಮೂದಿಸಿ. 3. ** ಘಟಕಗಳನ್ನು ಆಯ್ಕೆಮಾಡಿ **: ನೀವು ಪರಿವರ್ತಿಸುತ್ತಿರುವ ಘಟಕಗಳನ್ನು ಆರಿಸಿ (ಉದಾ., Bq to ci). 4. ** ಲೆಕ್ಕಾಚಾರ **: ನಿಮ್ಮ ಫಲಿತಾಂಶಗಳನ್ನು ತಕ್ಷಣ ವೀಕ್ಷಿಸಲು "ಪರಿವರ್ತಿಸು" ಬಟನ್ ಕ್ಲಿಕ್ ಮಾಡಿ. 5. ** ಫಲಿತಾಂಶಗಳನ್ನು ವ್ಯಾಖ್ಯಾನಿಸಿ **: ಬೀಟಾ ಕಣಗಳ ಪರಿವರ್ತಿಸಲಾದ ಮೌಲ್ಯವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು output ಟ್ಪುಟ್ ಅನ್ನು ಪರಿಶೀಲಿಸಿ.
** ಬೀಟಾ ಕಣಗಳು ಯಾವುವು? ** ಬೀಟಾ ಕಣಗಳು ಹೆಚ್ಚಿನ ಶಕ್ತಿಯ ಎಲೆಕ್ಟ್ರಾನ್ಗಳು ಅಥವಾ ವಿಕಿರಣಶೀಲ ನ್ಯೂಕ್ಲಿಯಸ್ಗಳ ಬೀಟಾ ಕೊಳೆಯುವಿಕೆಯ ಸಮಯದಲ್ಲಿ ಹೊರಸೂಸಲ್ಪಟ್ಟ ಪಾಸಿಟ್ರಾನ್ಗಳಾಗಿವೆ.
** ಬೀಟಾ ಕಣ ಚಟುವಟಿಕೆಯನ್ನು BQ ಯಿಂದ CI ಗೆ ಪರಿವರ್ತಿಸುವುದು ಹೇಗೆ? ** 1 ಸಿಐ 3.7 × 10^10 BQ ಗೆ ಸಮನಾಗಿರುವ ಪರಿವರ್ತನೆ ಅಂಶವನ್ನು ಬಳಸಿ.ಈ ಅಂಶದಿಂದ BQ ಯ ಸಂಖ್ಯೆಯನ್ನು ಸರಳವಾಗಿ ಭಾಗಿಸಿ.
** ಬೀಟಾ ಕಣಗಳನ್ನು ಅಳೆಯುವುದು ಏಕೆ ಮುಖ್ಯ? ** ವೈದ್ಯಕೀಯ ಚಿಕಿತ್ಸೆಗಳು, ಪರಮಾಣು ಸಂಶೋಧನೆ ಮತ್ತು ವಿಕಿರಣಶಾಸ್ತ್ರದ ಸುರಕ್ಷತೆಯನ್ನು ಖಾತರಿಪಡಿಸುವ ಅನ್ವಯಗಳಿಗೆ ಬೀಟಾ ಕಣಗಳನ್ನು ಅಳೆಯುವುದು ನಿರ್ಣಾಯಕವಾಗಿದೆ.
** ಬೀಟಾ ಕಣಗಳನ್ನು ಅಳೆಯಲು ಯಾವ ಘಟಕಗಳನ್ನು ಬಳಸಲಾಗುತ್ತದೆ? ** ಬೀಟಾ ಕಣಗಳ ಚಟುವಟಿಕೆಯನ್ನು ಅಳೆಯುವ ಸಾಮಾನ್ಯ ಘಟಕಗಳು ಬೆಕ್ವೆರೆಲ್ಸ್ (ಬಿಕ್ಯೂ) ಮತ್ತು ಕ್ಯುರೀಸ್ (ಸಿಐ).
** ನಾನು ಇತರ ರೀತಿಯ ವಿಕಿರಣಕ್ಕಾಗಿ ಬೀಟಾ ಕಣಗಳ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಬಳಸಬಹುದೇ? ** ಈ ಉಪಕರಣವನ್ನು ನಿರ್ದಿಷ್ಟವಾಗಿ ಬೀಟಾ ಕಣಗಳಿಗಾಗಿ ವಿನ್ಯಾಸಗೊಳಿಸಲಾಗಿದೆ;ಇತರ ರೀತಿಯ ವಿಕಿರಣಕ್ಕಾಗಿ, ದಯವಿಟ್ಟು ಇನಾಯಮ್ ವೆಬ್ಸೈಟ್ನಲ್ಲಿ ಲಭ್ಯವಿರುವ ಸೂಕ್ತ ಪರಿವರ್ತನೆ ಸಾಧನಗಳನ್ನು ನೋಡಿ.
ಬೀಟಾ ಕಣಗಳ ಪರಿವರ್ತಕ ಸಾಧನವನ್ನು ಬಳಸುವುದರ ಮೂಲಕ, ಬಳಕೆದಾರರು ಬೀಟಾ ಕಣ ಅಳತೆಯ ಮಹತ್ವವನ್ನು ಸುಲಭವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು ಮತ್ತು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಬಹುದು ಎಮೆಂಟ್ಸ್, ವಿವಿಧ ವೈಜ್ಞಾನಿಕ ಮತ್ತು ವೈದ್ಯಕೀಯ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಅವರ ಜ್ಞಾನ ಮತ್ತು ಅನ್ವಯವನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ.