1 mA = 0.001 Ω
1 Ω = 1,000 mA
ఉదాహరణ:
15 మిల్లియంప్స్ ను ఓం గా మార్చండి:
15 mA = 0.015 Ω
మిల్లియంప్స్ | ఓం |
---|---|
0.01 mA | 1.0000e-5 Ω |
0.1 mA | 0 Ω |
1 mA | 0.001 Ω |
2 mA | 0.002 Ω |
3 mA | 0.003 Ω |
5 mA | 0.005 Ω |
10 mA | 0.01 Ω |
20 mA | 0.02 Ω |
30 mA | 0.03 Ω |
40 mA | 0.04 Ω |
50 mA | 0.05 Ω |
60 mA | 0.06 Ω |
70 mA | 0.07 Ω |
80 mA | 0.08 Ω |
90 mA | 0.09 Ω |
100 mA | 0.1 Ω |
250 mA | 0.25 Ω |
500 mA | 0.5 Ω |
750 mA | 0.75 Ω |
1000 mA | 1 Ω |
10000 mA | 10 Ω |
100000 mA | 100 Ω |
మిల్లియాంపేర్ (ఎంఏ) అనేది ఎలక్ట్రిక్ కరెంట్ యొక్క యూనిట్, ఇది ఒక ఆంపియర్ (ఎ) లో వెయ్యి వ వంతుకు సమానం.చిన్న ప్రవాహాలను కొలవడానికి ఇది సాధారణంగా ఎలక్ట్రికల్ మరియు ఎలక్ట్రానిక్ అనువర్తనాల్లో ఉపయోగించబడుతుంది, ముఖ్యంగా సున్నితమైన భాగాలతో కూడిన సర్క్యూట్లలో.ఎలక్ట్రానిక్లతో పనిచేసే ఇంజనీర్లు, సాంకేతిక నిపుణులు మరియు అభిరుచి గలవారికి మిల్లియమ్పెర్ను ఇతర యూనిట్లకు ఎలా మార్చాలో అర్థం చేసుకోవడం చాలా అవసరం.
మిల్లియాంపేర్ అంతర్జాతీయ వ్యవస్థ యొక్క యూనిట్ల (SI) లో భాగం మరియు శాస్త్రీయ మరియు ఇంజనీరింగ్ సందర్భాలలో విస్తృతంగా గుర్తించబడింది.మిల్లియామ్పెరేకు చిహ్నం "మా", ఇది "మిల్లీ-" అనే ఉపసర్గ నుండి ఉద్భవించింది, దీని అర్థం వెయ్యి వ వంతు.ఈ ప్రామాణీకరణ వివిధ విభాగాలలో స్థిరమైన కమ్యూనికేషన్ మరియు అవగాహనను అనుమతిస్తుంది.
ఎలక్ట్రిక్ కరెంట్ యొక్క భావన మొట్టమొదట 19 వ శతాబ్దం ప్రారంభంలో ప్రవేశపెట్టబడింది, ఆండ్రే-మేరీ ఆంపేర్ ఈ రంగంలో మార్గదర్శకులలో ఒకరు.మిల్లియమ్పెర్ చిన్న ప్రవాహాలను కొలవడానికి ఒక ఆచరణాత్మక యూనిట్గా స్థాపించబడింది, ఇది సున్నితమైన ఎలక్ట్రానిక్ భాగాలతో పనిచేయడం సులభం చేస్తుంది.సంవత్సరాలుగా, టెలికమ్యూనికేషన్స్, మెడికల్ పరికరాలు మరియు వినియోగదారు ఎలక్ట్రానిక్స్ సహా వివిధ అనువర్తనాల్లో మిల్లియాంపేర్ వాడకం సమగ్రంగా మారింది.
మిల్లియామ్పెర్ను ఆంపియర్గా మార్చడానికి, మీరు ఈ క్రింది సూత్రాన్ని ఉపయోగించవచ్చు: [ \text{Current (A)} = \frac{\text{Current (mA)}}{1000} ]
ఉదాహరణకు, మీకు 500 mA కరెంట్ ఉంటే, ఆంపియర్లకు మార్చడం ఉంటుంది: [ \text{Current (A)} = \frac{500 \text{ mA}}{1000} = 0.5 \text{ A} ]
బ్యాటరీతో పనిచేసే పరికరాలు, సెన్సార్లు మరియు మైక్రోకంట్రోలర్ల వంటి తక్కువ ప్రవాహాలు ఉన్న అనువర్తనాల్లో మిల్లియమ్పెర్ ముఖ్యంగా ఉపయోగపడుతుంది.ఇది ఎలక్ట్రానిక్ సర్క్యూట్ల యొక్క సరైన పనితీరును నిర్ధారిస్తుంది, ప్రస్తుత స్థాయిలను ఖచ్చితంగా పేర్కొనడానికి మరియు కొలవడానికి ఇంజనీర్లను అనుమతిస్తుంది.
మిల్లియమ్పెర్ కన్వర్టర్ సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి: 1. 2. 3. ** అవుట్పుట్ యూనిట్ ఎంచుకోండి **: కావలసిన అవుట్పుట్ యూనిట్ (ఉదా., ఆంపియర్స్, మైక్రోఅంపెర్స్) ఎంచుకోండి. 4. ** మార్చండి **: ఫలితాన్ని తక్షణమే చూడటానికి 'కన్వర్ట్' బటన్ పై క్లిక్ చేయండి. 5. ** ఫలితాలను సమీక్షించండి **: మార్చబడిన విలువ ప్రదర్శించబడుతుంది, ఇది మీ లెక్కలు లేదా ప్రాజెక్టులలో ఉపయోగించడానికి మిమ్మల్ని అనుమతిస్తుంది.
** 1.మిల్లియాంపేర్ మరియు ఆంపిరే మధ్య తేడా ఏమిటి? ** మిల్లియాంపెరే (ఎంఏ) ఒక ఆంపియర్ (ఎ) లో వెయ్యి వంత్.ఇది చిన్న ప్రవాహాలను కొలవడానికి ఉపయోగించబడుతుంది, అయితే పెద్ద ప్రవాహాల కోసం ఆంపియర్లు ఉపయోగించబడతాయి.
** 2.మిల్లియమ్పెర్ను ఇతర యూనిట్లుగా ఎలా మార్చగలను? ** మీరు మా [మిల్లియామ్పెర్ కన్వర్టర్ సాధనం] (https://www.inaam.co/unit-converter/electric_current) ను మిల్లియమ్పెర్ను ఆంపిర్లు లేదా మైక్రోఅంపెరెస్ వంటి ఇతర యూనిట్లకు సులభంగా మార్చడానికి ఉపయోగించవచ్చు.
** 3.ఎలక్ట్రానిక్స్లో మిల్లియామ్పెరే ఎందుకు ముఖ్యమైనది? ** ఎలక్ట్రానిక్ సర్క్యూట్లలో చిన్న ప్రవాహాలను కొలవడానికి మిల్లియాంపెర్ చాలా ముఖ్యమైనది, భాగాలు నష్టం లేకుండా సరిగ్గా పనిచేస్తాయని నిర్ధారిస్తుంది.
** 4.అధిక ప్రస్తుత అనువర్తనాల కోసం నేను మిల్లియాంపేర్ కన్వర్టర్ను ఉపయోగించవచ్చా? ** మిల్లియాంపెర్ కన్వర్టర్ తక్కువ ప్రస్తుత కొలతల కోసం రూపొందించబడినప్పటికీ, మిల్లియమ్పెర్ మరియు ఆంపియర్స్ వంటి ఉన్నత యూనిట్ల మధ్య సంబంధాన్ని అర్థం చేసుకోవడంలో కూడా ఇది సహాయపడుతుంది.
** 5.మిల్లియాంపేర్ యొక్క కొన్ని సాధారణ అనువర్తనాలు ఏమిటి? ** మిల్లియాంపెర్ సాధారణంగా బ్యాటరీతో పనిచేసే పరికరాల్లో ఉపయోగిస్తారు, సెన్స్ ఎలక్ట్రిక్ కరెంట్ స్థాయిలను కొలవడానికి మరియు నిర్వహించడానికి ORS, వైద్య పరికరాలు మరియు టెలికమ్యూనికేషన్స్.
మిల్లియాంపేర్ కన్వర్టర్ సాధనాన్ని సమర్థవంతంగా ఉపయోగించడం ద్వారా, మీరు విద్యుత్ ప్రవాహాలపై మీ అవగాహనను పెంచుకోవచ్చు మరియు మీ ప్రాజెక్టుల యొక్క ఖచ్చితత్వాన్ని మెరుగుపరచవచ్చు.మీరు ప్రొఫెషనల్ ఇంజనీర్ అయినా లేదా అభిరుచి గలవారు అయినా, ఈ సాధనం మీ విద్యుత్ కొలత అవసరాలకు అమూల్యమైన వనరు.
ఓం (ω) అనేది అంతర్జాతీయ వ్యవస్థ ఆఫ్ యూనిట్ల (SI) లో విద్యుత్ నిరోధకత యొక్క ప్రామాణిక యూనిట్.విద్యుత్ ప్రవాహాన్ని ఒక పదార్థం ఎంత బలంగా వ్యతిరేకిస్తుందో ఇది అంచనా వేస్తుంది.ఎలక్ట్రికల్ సర్క్యూట్లతో పనిచేసే ఎవరికైనా నిరోధకత అర్థం చేసుకోవడం చాలా ముఖ్యం, ఎందుకంటే ఇది విద్యుత్ వ్యవస్థల పనితీరు మరియు భద్రతను ప్రత్యక్షంగా ప్రభావితం చేస్తుంది.
ఆ పాయింట్లకు వర్తించే ఒక వోల్ట్ యొక్క స్థిరమైన సంభావ్య వ్యత్యాసం ఒక ఆంపియర్ యొక్క ప్రవాహాన్ని ఉత్పత్తి చేసేటప్పుడు OHM కండక్టర్ యొక్క రెండు పాయింట్ల మధ్య ప్రతిఘటనగా నిర్వచించబడింది.ఈ ప్రామాణీకరణ వివిధ అనువర్తనాలు మరియు పరిశ్రమలలో విద్యుత్ కొలతలలో స్థిరత్వం మరియు విశ్వసనీయతను నిర్ధారిస్తుంది.
"ఓహ్మ్" అనే పదానికి జర్మన్ భౌతిక శాస్త్రవేత్త జార్జ్ సైమన్ ఓం పేరు పెట్టారు, అతను 1820 లలో ఓం యొక్క చట్టాన్ని రూపొందించాడు.అతని పని ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు సర్క్యూట్ల అధ్యయనానికి పునాది వేసింది.సంవత్సరాలుగా, ఓం యొక్క చట్టం యొక్క అవగాహన మరియు అనువర్తనం అభివృద్ధి చెందింది, ఇది సాంకేతికత మరియు విద్యుత్ వ్యవస్థలలో పురోగతికి దారితీసింది.
ఓంల వాడకాన్ని వివరించడానికి, 10 వోల్ట్ల వోల్టేజ్ మరియు 2 ఆంపియర్ల కరెంట్తో సాధారణ సర్క్యూట్ను పరిగణించండి.ఓం యొక్క చట్టం (v = i × r) ఉపయోగించి, మేము ప్రతిఘటనను లెక్కించవచ్చు:
ఎలక్ట్రానిక్స్, టెలికమ్యూనికేషన్స్ మరియు ఎలక్ట్రికల్ ఇంజనీరింగ్తో సహా వివిధ రంగాలలో ఓంలను విస్తృతంగా ఉపయోగిస్తున్నారు.సర్క్యూట్ల రూపకల్పనలో, విద్యుత్ సమస్యలను ట్రబుల్షూటింగ్ చేయడంలో మరియు భద్రతా ప్రమాణాలు నెరవేర్చడానికి ఇవి సహాయపడతాయి.
OHM యూనిట్ కన్వర్టర్ సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి: 1. 2. ** ఇన్పుట్ మరియు అవుట్పుట్ యూనిట్లను ఎంచుకోండి **: మీరు మార్చాలనుకుంటున్న యూనిట్లను ఎంచుకోండి. 3. ** విలువను నమోదు చేయండి **: మీరు మార్చాలనుకుంటున్న విలువను ఇన్పుట్ చేయండి. 4. ** కన్వర్ట్ క్లిక్ చేయండి **: ఫలితాలను తక్షణమే చూడటానికి కన్వర్ట్ బటన్ను నొక్కండి. 5. ** ఫలితాలను సమీక్షించండి **: సాధనం ఎంచుకున్న యూనిట్లో సమానమైన విలువను ప్రదర్శిస్తుంది.
** నేను ఎసి సర్క్యూట్ల కోసం ఓం కన్వర్టర్ను ఉపయోగించవచ్చా? ** .
** రోజువారీ జీవితంలో ఓంల యొక్క కొన్ని సాధారణ అనువర్తనాలు ఏమిటి? **
ఓం యూనిట్ కన్వర్ట్ను ఉపయోగించడం ద్వారా ER సాధనం, వినియోగదారులు విద్యుత్ నిరోధకతపై వారి అవగాహనను పెంచుకోవచ్చు మరియు వారి లెక్కలను మెరుగుపరుస్తారు, చివరికి మరింత సమర్థవంతమైన మరియు సురక్షితమైన విద్యుత్ వ్యవస్థలకు దారితీస్తుంది.