1 G = 1 ℧
1 ℧ = 1 G
ఉదాహరణ:
15 వాహకత ను మో గా మార్చండి:
15 G = 15 ℧
వాహకత | మో |
---|---|
0.01 G | 0.01 ℧ |
0.1 G | 0.1 ℧ |
1 G | 1 ℧ |
2 G | 2 ℧ |
3 G | 3 ℧ |
5 G | 5 ℧ |
10 G | 10 ℧ |
20 G | 20 ℧ |
30 G | 30 ℧ |
40 G | 40 ℧ |
50 G | 50 ℧ |
60 G | 60 ℧ |
70 G | 70 ℧ |
80 G | 80 ℧ |
90 G | 90 ℧ |
100 G | 100 ℧ |
250 G | 250 ℧ |
500 G | 500 ℧ |
750 G | 750 ℧ |
1000 G | 1,000 ℧ |
10000 G | 10,000 ℧ |
100000 G | 100,000 ℧ |
** G ** చిహ్నం ద్వారా ప్రాతినిధ్యం వహిస్తున్న ప్రవర్తన, ఒక పదార్థం ద్వారా విద్యుత్ ఎంత సులభంగా ప్రవహిస్తుందో కొలత.ఇది ప్రతిఘటన యొక్క పరస్పరం మరియు సిమెన్స్ (ల) లో వ్యక్తీకరించబడుతుంది.ఎలక్ట్రికల్ ఇంజనీర్లు మరియు సాంకేతిక నిపుణులకు ప్రవర్తనను అర్థం చేసుకోవడం చాలా అవసరం, ఎందుకంటే ఇది సర్క్యూట్ డిజైన్ మరియు విశ్లేషణలో కీలక పాత్ర పోషిస్తుంది.
అంతర్జాతీయ వ్యవస్థ ఆఫ్ యూనిట్ల (SI) లో ప్రవర్తన ప్రామాణీకరించబడింది, ఇక్కడ 1 సిమెన్స్ కండక్టర్ యొక్క ప్రవర్తనగా నిర్వచించబడింది, దీనిలో 1 వోల్టేజ్ 1 వోల్టేజ్ కింద 1 ఆంపియర్ ప్రవాహం ప్రవహిస్తుంది.ఈ ప్రామాణీకరణ వివిధ అనువర్తనాలు మరియు పరిశ్రమలలో స్థిరమైన కొలతలను అనుమతిస్తుంది.
ప్రవర్తన యొక్క భావన శతాబ్దాలుగా అభివృద్ధి చెందింది, స్థానిక ఎలక్ట్రికల్ ఇంజనీరింగ్కు మార్గం సుగమం చేసే విద్యుత్తులో ప్రారంభ అధ్యయనాలు ఉన్నాయి.ప్రవర్తన మరియు ప్రతిఘటన మధ్య సంబంధం 19 వ శతాబ్దంలో లాంఛనప్రాయంగా ఉంది, ఇది ఓం యొక్క చట్టం అభివృద్ధికి దారితీసింది, ఇది ప్రస్తుత వోల్టేజ్కు నేరుగా అనులోమానుపాతంలో ఉందని మరియు ప్రతిఘటనకు విలోమానుపాతంలో ఉందని పేర్కొంది.
ప్రవర్తనను వివరించడానికి, 10 ఓంల నిరోధకత కలిగిన సర్క్యూట్ను పరిగణించండి.సూత్రాన్ని ఉపయోగించి ప్రవర్తన (జి) ను లెక్కించవచ్చు:
[ G = \frac{1}{R} ]
ఇక్కడ R అనేది ఓంలలో ప్రతిఘటన.అందువలన, 10 ఓంల నిరోధకత కోసం:
[ G = \frac{1}{10} = 0.1 , S ]
దీని అర్థం సర్క్యూట్ 0.1 సిమెన్స్ ప్రవర్తనను కలిగి ఉంది.
ఎలక్ట్రికల్ ఇంజనీరింగ్, ఫిజిక్స్ మరియు ఎలక్ట్రికల్ సిస్టమ్స్ ప్రబలంగా ఉన్న వివిధ పరిశ్రమలలో ప్రవర్తన విస్తృతంగా ఉపయోగించబడుతుంది.ఇది సర్క్యూట్ పనితీరును విశ్లేషించడానికి, భద్రతను నిర్ధారించడానికి మరియు శక్తి సామర్థ్యాన్ని ఆప్టిమైజ్ చేయడంలో సహాయపడుతుంది.
మా వెబ్సైట్లో ప్రవర్తన సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి:
** ప్రవర్తన అంటే ఏమిటి? ** ప్రవర్తన అనేది సిమెన్స్ (ల) లో వ్యక్తీకరించబడిన ఒక పదార్థం ద్వారా విద్యుత్తు ఎంత తేలికగా ప్రవహిస్తుందో కొలత.
** నేను ప్రతిఘటనను ప్రవర్తనగా ఎలా మార్చగలను? ** మీరు \ (g = \ frac {1} {r} ) సూత్రాన్ని ఉపయోగించి మీరు ప్రతిఘటనను ప్రవర్తనకు మార్చవచ్చు, ఇక్కడ r అనేది ఓంలలో ప్రతిఘటన.
** ప్రవర్తన యొక్క యూనిట్లు ఏమిటి? ** ప్రామాణిక ప్రవర్తన యొక్క యూనిట్ సిమెన్స్ (లు), ఇది ఓంల పరస్పరం.
** ఎలక్ట్రికల్ ఇంజనీరింగ్లో ప్రవర్తన ఎందుకు ముఖ్యమైనది? ** సర్క్యూట్ పనితీరును విశ్లేషించడానికి, భద్రతను నిర్ధారించడానికి మరియు విద్యుత్ వ్యవస్థలలో శక్తి సామర్థ్యాన్ని ఆప్టిమైజ్ చేయడానికి ప్రవర్తన చాలా ముఖ్యమైనది.
** ఏదైనా నిరోధక విలువ కోసం నేను ప్రవర్తన సాధనాన్ని ఉపయోగించవచ్చా? ** అవును, ప్రవర్తన సాధనాన్ని ఏదైనా నిరోధక విలువ కోసం ఉపయోగించవచ్చు, ఇది సంబంధిత ప్రవర్తనను సులభంగా లెక్కించడానికి మిమ్మల్ని అనుమతిస్తుంది.
మరింత సమాచారం కోసం మరియు ప్రవర్తన సాధనాన్ని యాక్సెస్ చేయడానికి, [ఇనాయిమ్ యొక్క కండక్టెన్స్ కాలిక్యులేటర్] (https://www.inaam.co/unit-converter/electrical_resistance) సందర్శించండి.ఈ సాధనాన్ని ఉపయోగించడం ద్వారా, మీరు విద్యుత్ వ్యవస్థలపై మీ అవగాహనను మెరుగుపరచవచ్చు మరియు మీ ఇంజనీరింగ్ నైపుణ్యాలను మెరుగుపరచవచ్చు.
MHO (℧ ℧) అనేది విద్యుత్ ప్రవర్తన యొక్క యూనిట్, ఇది ఓంలు (ω) లో కొలిచిన ప్రతిఘటన యొక్క పరస్పరం సూచిస్తుంది.ఇది ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో కీలకమైన మెట్రిక్, ఇది కండక్టర్ ద్వారా విద్యుత్ ప్రవాహం ఎంత తేలికగా ప్రవహిస్తుందో సూచిస్తుంది."MHO" అనే పదం "ఓహ్మ్" అనే పదం వెనుకకు ఉచ్చరించబడింది, ఇది ప్రతిఘటనతో దాని విలోమ సంబంధాన్ని సూచిస్తుంది.
MHO ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్స్ (SI) లో భాగం, ఇక్కడ ఇది అధికారికంగా సిమెన్స్ (లు) గా గుర్తించబడింది.ఒక MHO ఒక సిమెన్స్కు సమానం, మరియు రెండు యూనిట్లు వివిధ అనువర్తనాల్లో పరస్పరం మార్చుకుంటాయి.MHO యొక్క ప్రామాణీకరణ వివిధ రంగాలు మరియు పరిశ్రమలలో విద్యుత్ కొలతలలో స్థిరత్వాన్ని నిర్ధారిస్తుంది.
విద్యుత్ యొక్క ప్రారంభ అధ్యయనాల నుండి విద్యుత్ ప్రవర్తన యొక్క భావన గణనీయంగా అభివృద్ధి చెందింది.ఎలక్ట్రికల్ ఇంజనీరింగ్ ఆకృతిని ప్రారంభించినందున "MHO" అనే పదాన్ని 19 వ శతాబ్దం చివరలో మొదట ప్రవేశపెట్టారు.సాంకేతిక పరిజ్ఞానం అభివృద్ధి చెందుతున్నప్పుడు, విద్యుత్ ప్రవర్తనలో ఖచ్చితమైన కొలతల అవసరం సిమెన్స్ను ప్రామాణిక యూనిట్గా స్వీకరించడానికి దారితీసింది, అయితే "MHO" అనే పదం విద్యా సందర్భాలు మరియు ఆచరణాత్మక అనువర్తనాలలో విస్తృతంగా ఉపయోగించబడుతోంది.
MHO వాడకాన్ని వివరించడానికి, ప్రతిఘటన 5 ఓంలు ఉన్న సర్క్యూట్ను పరిగణించండి.ప్రవర్తనను (MHO లో) సూత్రాన్ని ఉపయోగించి లెక్కించవచ్చు:
[ \ టెక్స్ట్ {కండక్టెన్స్ (℧)} = \ ఫ్రాక్ {1} {\ టెక్స్ట్ {రెసిస్టెన్స్ (ω)}} ]
అందువలన, 5 ఓంల నిరోధకత కోసం:
[ \ టెక్స్ట్ {కండక్టెన్స్} = \ ఫ్రాక్ {1} {5} = 0.2 , \ టెక్స్ట్ {℧} ]
MHO ప్రధానంగా ఎలక్ట్రికల్ ఇంజనీరింగ్, టెలికమ్యూనికేషన్స్ మరియు భౌతిక శాస్త్రంలో పదార్థాలు మరియు భాగాల ప్రవర్తనను కొలవడానికి ఉపయోగిస్తారు.సర్క్యూట్ల రూపకల్పన, విద్యుత్ వ్యవస్థలను విశ్లేషించడానికి మరియు విద్యుత్ అనువర్తనాల్లో భద్రతను నిర్ధారించడానికి ఈ యూనిట్ను అర్థం చేసుకోవడం చాలా అవసరం.
మా వెబ్సైట్లో MHO (℧) సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి:
మరింత సమాచారం కోసం మరియు MHO (℧) మార్పిడి సాధనాన్ని యాక్సెస్ చేయడానికి, [INAIAM యొక్క MHO కన్వర్టర్] (https://www.inaaim.co/unit-converter/electrical_resistance) సందర్శించండి.ఉపయోగించడం ద్వారా ఈ సాధనం, మీరు విద్యుత్ ప్రవర్తనపై మీ అవగాహనను పెంచుకోవచ్చు మరియు మీ లెక్కలను సులభంగా మెరుగుపరచవచ్చు.