1 nV = 1.0000e-9 ℧
1 ℧ = 1,000,000,000 nV
ఉదాహరణ:
15 నానోవోల్ట్ ను మో గా మార్చండి:
15 nV = 1.5000e-8 ℧
నానోవోల్ట్ | మో |
---|---|
0.01 nV | 1.0000e-11 ℧ |
0.1 nV | 1.0000e-10 ℧ |
1 nV | 1.0000e-9 ℧ |
2 nV | 2.0000e-9 ℧ |
3 nV | 3.0000e-9 ℧ |
5 nV | 5.0000e-9 ℧ |
10 nV | 1.0000e-8 ℧ |
20 nV | 2.0000e-8 ℧ |
30 nV | 3.0000e-8 ℧ |
40 nV | 4.0000e-8 ℧ |
50 nV | 5.0000e-8 ℧ |
60 nV | 6.0000e-8 ℧ |
70 nV | 7.0000e-8 ℧ |
80 nV | 8.0000e-8 ℧ |
90 nV | 9.0000e-8 ℧ |
100 nV | 1.0000e-7 ℧ |
250 nV | 2.5000e-7 ℧ |
500 nV | 5.0000e-7 ℧ |
750 nV | 7.5000e-7 ℧ |
1000 nV | 1.0000e-6 ℧ |
10000 nV | 1.0000e-5 ℧ |
100000 nV | 0 ℧ |
నానోవోల్ట్ (NV) అనేది విద్యుత్ సంభావ్యత కోసం కొలత యొక్క యూనిట్, ఇది వోల్ట్ యొక్క ఒక బిలియన్ వంతు (1 NV = 10^-9 V) ను సూచిస్తుంది.ఇది సాధారణంగా ఎలక్ట్రానిక్స్ మరియు ఫిజిక్స్ వంటి పొలాలలో ఉపయోగించబడుతుంది, ఇక్కడ వోల్టేజ్ యొక్క ఖచ్చితమైన కొలతలు కీలకం.సున్నితమైన ఎలక్ట్రానిక్ భాగాలతో పనిచేసే ఇంజనీర్లు, పరిశోధకులు మరియు సాంకేతిక నిపుణులకు నానోవోల్ట్లను అర్థం చేసుకోవడం మరియు మార్చడం చాలా అవసరం.
నానోవోల్ట్ ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్స్ (SI) లో భాగం, ఇది వివిధ శాస్త్రీయ విభాగాలలో కొలతలను ప్రామాణీకరిస్తుంది.ఎలక్ట్రిక్ సంభావ్యత యొక్క బేస్ యూనిట్ అయిన వోల్ట్, ఒక సెకనులో ఒక ఓం ప్రతిఘటనలో ఒక కూలంబ్ ఆఫ్ ఛార్జ్ యొక్క సంభావ్య వ్యత్యాసంగా నిర్వచించబడింది.నానోవోల్ట్, సబ్యూనిట్ కావడం, నిమిషం వోల్టేజ్ మార్పులు ముఖ్యమైన అనువర్తనాల్లో మరింత ఖచ్చితమైన కొలతలను అనుమతిస్తుంది.
విద్యుత్ సంభావ్యత యొక్క భావన విద్యుత్ యొక్క ప్రారంభ రోజుల నుండి గణనీయంగా అభివృద్ధి చెందింది.ఎలక్ట్రోకెమిస్ట్రీలో మార్గదర్శక పనికి ప్రసిద్ధి చెందిన ఇటాలియన్ భౌతిక శాస్త్రవేత్త అలెశాండ్రో వోల్టా పేరు పెట్టారు.సాంకేతిక పరిజ్ఞానం అభివృద్ధి చెందుతున్నప్పుడు, మరింత ఖచ్చితమైన కొలతల అవసరం నానోవోల్ట్ వంటి చిన్న యూనిట్లను ప్రవేశపెట్టడానికి దారితీసింది, ఇది ఆధునిక ఎలక్ట్రానిక్స్లో, ముఖ్యంగా సెన్సార్లు మరియు మైక్రోఎలక్ట్రానిక్స్ అభివృద్ధిలో అవసరం.
నానోవోల్ట్ల వాడకాన్ని వివరించడానికి, సెన్సార్ 0.5 మైక్రోవోల్ట్ల (µV) వోల్టేజ్ను అవుట్పుట్ చేసే దృష్టాంతాన్ని పరిగణించండి.దీన్ని నానోవోల్ట్లుగా మార్చడానికి, మీరు ఈ క్రింది గణనను ఉపయోగిస్తారు:
0.5 µV = 0.5 × 1,000 NV = 500 NV
వైద్య పరికరాలు, శాస్త్రీయ పరికరాలు మరియు టెలికమ్యూనికేషన్స్ వంటి తక్కువ-స్థాయి సంకేతాలతో కూడిన అనువర్తనాల్లో నానోవోల్ట్లు ముఖ్యంగా ఉపయోగపడతాయి.నానోవోల్ట్లను ఎలా మార్చాలో మరియు ఎలా ఉపయోగించుకోవాలో అర్థం చేసుకోవడం కొలతల యొక్క ఖచ్చితత్వాన్ని పెంచుతుంది మరియు ఎలక్ట్రానిక్ వ్యవస్థల పనితీరును మెరుగుపరుస్తుంది.
నానోవోల్ట్ కన్వర్టర్ సాధనంతో సంభాషించడానికి, ఈ సాధారణ దశలను అనుసరించండి:
** నేను నానోవోల్ట్లను వోల్టేజ్ యొక్క ఇతర యూనిట్లకు మార్చగలనా? ** .
** నానోవోల్ట్లలో వోల్టేజ్ను కొలవడం ఎందుకు ముఖ్యం? **
మరింత సమాచారం కోసం మరియు AC కోసం నానోవోల్ట్ కన్వర్టర్ సాధనాన్ని సెస్ చేయండి, [ఇనాయం యొక్క నానోవోల్ట్ కన్వర్టర్] (https://www.inaam.co/unit-converter/electrical_resistance) సందర్శించండి.ఈ సాధనాన్ని ఉపయోగించడం ద్వారా, మీరు విద్యుత్ కొలతలపై మీ అవగాహనను పెంచుకోవచ్చు మరియు మీ ప్రాజెక్ట్ యొక్క ఖచ్చితత్వాన్ని మెరుగుపరచవచ్చు.
MHO (℧ ℧) అనేది విద్యుత్ ప్రవర్తన యొక్క యూనిట్, ఇది ఓంలు (ω) లో కొలిచిన ప్రతిఘటన యొక్క పరస్పరం సూచిస్తుంది.ఇది ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో కీలకమైన మెట్రిక్, ఇది కండక్టర్ ద్వారా విద్యుత్ ప్రవాహం ఎంత తేలికగా ప్రవహిస్తుందో సూచిస్తుంది."MHO" అనే పదం "ఓహ్మ్" అనే పదం వెనుకకు ఉచ్చరించబడింది, ఇది ప్రతిఘటనతో దాని విలోమ సంబంధాన్ని సూచిస్తుంది.
MHO ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్స్ (SI) లో భాగం, ఇక్కడ ఇది అధికారికంగా సిమెన్స్ (లు) గా గుర్తించబడింది.ఒక MHO ఒక సిమెన్స్కు సమానం, మరియు రెండు యూనిట్లు వివిధ అనువర్తనాల్లో పరస్పరం మార్చుకుంటాయి.MHO యొక్క ప్రామాణీకరణ వివిధ రంగాలు మరియు పరిశ్రమలలో విద్యుత్ కొలతలలో స్థిరత్వాన్ని నిర్ధారిస్తుంది.
విద్యుత్ యొక్క ప్రారంభ అధ్యయనాల నుండి విద్యుత్ ప్రవర్తన యొక్క భావన గణనీయంగా అభివృద్ధి చెందింది.ఎలక్ట్రికల్ ఇంజనీరింగ్ ఆకృతిని ప్రారంభించినందున "MHO" అనే పదాన్ని 19 వ శతాబ్దం చివరలో మొదట ప్రవేశపెట్టారు.సాంకేతిక పరిజ్ఞానం అభివృద్ధి చెందుతున్నప్పుడు, విద్యుత్ ప్రవర్తనలో ఖచ్చితమైన కొలతల అవసరం సిమెన్స్ను ప్రామాణిక యూనిట్గా స్వీకరించడానికి దారితీసింది, అయితే "MHO" అనే పదం విద్యా సందర్భాలు మరియు ఆచరణాత్మక అనువర్తనాలలో విస్తృతంగా ఉపయోగించబడుతోంది.
MHO వాడకాన్ని వివరించడానికి, ప్రతిఘటన 5 ఓంలు ఉన్న సర్క్యూట్ను పరిగణించండి.ప్రవర్తనను (MHO లో) సూత్రాన్ని ఉపయోగించి లెక్కించవచ్చు:
[ \ టెక్స్ట్ {కండక్టెన్స్ (℧)} = \ ఫ్రాక్ {1} {\ టెక్స్ట్ {రెసిస్టెన్స్ (ω)}} ]
అందువలన, 5 ఓంల నిరోధకత కోసం:
[ \ టెక్స్ట్ {కండక్టెన్స్} = \ ఫ్రాక్ {1} {5} = 0.2 , \ టెక్స్ట్ {℧} ]
MHO ప్రధానంగా ఎలక్ట్రికల్ ఇంజనీరింగ్, టెలికమ్యూనికేషన్స్ మరియు భౌతిక శాస్త్రంలో పదార్థాలు మరియు భాగాల ప్రవర్తనను కొలవడానికి ఉపయోగిస్తారు.సర్క్యూట్ల రూపకల్పన, విద్యుత్ వ్యవస్థలను విశ్లేషించడానికి మరియు విద్యుత్ అనువర్తనాల్లో భద్రతను నిర్ధారించడానికి ఈ యూనిట్ను అర్థం చేసుకోవడం చాలా అవసరం.
మా వెబ్సైట్లో MHO (℧) సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి:
మరింత సమాచారం కోసం మరియు MHO (℧) మార్పిడి సాధనాన్ని యాక్సెస్ చేయడానికి, [INAIAM యొక్క MHO కన్వర్టర్] (https://www.inaaim.co/unit-converter/electrical_resistance) సందర్శించండి.ఉపయోగించడం ద్వారా ఈ సాధనం, మీరు విద్యుత్ ప్రవర్తనపై మీ అవగాహనను పెంచుకోవచ్చు మరియు మీ లెక్కలను సులభంగా మెరుగుపరచవచ్చు.