1 ρ = 1 S
1 S = 1 ρ
ఉదాహరణ:
15 రెసిస్టివిటీ ను సిమెన్స్ గా మార్చండి:
15 ρ = 15 S
రెసిస్టివిటీ | సిమెన్స్ |
---|---|
0.01 ρ | 0.01 S |
0.1 ρ | 0.1 S |
1 ρ | 1 S |
2 ρ | 2 S |
3 ρ | 3 S |
5 ρ | 5 S |
10 ρ | 10 S |
20 ρ | 20 S |
30 ρ | 30 S |
40 ρ | 40 S |
50 ρ | 50 S |
60 ρ | 60 S |
70 ρ | 70 S |
80 ρ | 80 S |
90 ρ | 90 S |
100 ρ | 100 S |
250 ρ | 250 S |
500 ρ | 500 S |
750 ρ | 750 S |
1000 ρ | 1,000 S |
10000 ρ | 10,000 S |
100000 ρ | 100,000 S |
రెసిస్టివిటీ, సింబల్ ρ (RHO) ద్వారా సూచించబడుతుంది, ఇది పదార్థాల యొక్క ప్రాథమిక ఆస్తి, ఇది విద్యుత్ ప్రవాహాన్ని ఎంత బలంగా అడ్డుకుంటుంది.ఇది ఓం-మీటర్లలో (ω · M) కొలుస్తారు మరియు వివిధ పదార్థాలలో విద్యుత్ వాహకతను అర్థం చేసుకోవడానికి ఇది చాలా ముఖ్యమైనది.తక్కువ రెసిస్టివిటీ, మెరుగ్గా పదార్థం విద్యుత్తును నిర్వహిస్తుంది, ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు మెటీరియల్స్ సైన్స్ లో ఈ కొలత చాలా ముఖ్యమైనది.
ఉష్ణోగ్రత మరియు పదార్థ కూర్పుతో సహా వివిధ పరిస్థితులలో రెసిస్టివిటీ ప్రామాణీకరించబడుతుంది.ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్ల (SI) ఒక నిర్దిష్ట ఉష్ణోగ్రత వద్ద ఒక పదార్థం యొక్క ప్రతిఘటనను నిర్వచిస్తుంది, సాధారణంగా లోహాలకు 20 ° C.ఈ ప్రామాణీకరణ వేర్వేరు అనువర్తనాలు మరియు పరిశ్రమలలో స్థిరమైన కొలతలను అనుమతిస్తుంది.
19 వ శతాబ్దంలో ప్రారంభమైనప్పటి నుండి రెసిస్టివిటీ భావన గణనీయంగా అభివృద్ధి చెందింది.జార్జ్ సైమన్ ఓం వంటి ప్రారంభ శాస్త్రవేత్తలు విద్యుత్ నిరోధకతను అర్థం చేసుకోవడానికి పునాది వేశారు.కాలక్రమేణా, మెటీరియల్ సైన్స్ మరియు ఎలక్ట్రికల్ ఇంజనీరింగ్లో పురోగతులు రెసిస్టివిటీపై మన అవగాహనను మెరుగుపరిచాయి, ఇది మరింత సమర్థవంతమైన పదార్థాలు మరియు సాంకేతిక పరిజ్ఞానాల అభివృద్ధికి దారితీసింది.
రెసిస్టివిటీని లెక్కించడానికి, సూత్రాన్ని ఉపయోగించండి: [ ρ = R \times \frac{A}{L} ] ఎక్కడ:
ఉదాహరణకు, ఒక రాగి తీగకు 5 of యొక్క నిరోధకత, 0.001 m² యొక్క క్రాస్ సెక్షనల్ ప్రాంతం మరియు 10 మీటర్ల పొడవు ఉంటే, రెసిస్టివిటీ ఉంటుంది: [ ρ = 5 \times \frac{0.001}{10} = 0.0005 , Ω·m ]
ఎలక్ట్రికల్ ఇంజనీరింగ్, ఎలక్ట్రానిక్స్ మరియు మెటీరియల్స్ సైన్స్ లో రెసిస్టివిటీని విస్తృతంగా ఉపయోగిస్తారు.ఎలక్ట్రికల్ కండక్టివిటీ కీలకమైన వైరింగ్, సర్క్యూట్ డిజైన్ మరియు ఇతర అనువర్తనాల కోసం ఇంజనీర్లకు తగిన పదార్థాలను ఎంచుకోవడానికి ఇది సహాయపడుతుంది.పదార్థాల ఉష్ణ మరియు విద్యుత్ లక్షణాల విశ్లేషణలో రెసిస్టివిటీని అర్థం చేసుకోవడం కూడా సహాయపడుతుంది.
మా వెబ్సైట్లోని రెసిస్టివిటీ సాధనంతో సంభాషించడానికి, ఈ సాధారణ దశలను అనుసరించండి:
** 1.రెసిస్టివిటీ అంటే ఏమిటి? ** ఓమ్-మీటర్లలో (ω · M) వ్యక్తీకరించబడిన విద్యుత్ ప్రవాహాన్ని ఒక పదార్థం ఎంత బలంగా వ్యతిరేకిస్తుందో రెసిస్టివిటీ అనేది కొలత.
** 2.నేను రెసిస్టివిటీని ఎలా లెక్కించగలను? ** మీరు \ (ρ = r \ సార్లు \ frac {a} {l} ) సూత్రాన్ని ఉపయోగించి రెసిస్టివిటీని లెక్కించవచ్చు, ఇక్కడ R నిరోధకత, A అనేది క్రాస్ సెక్షనల్ ప్రాంతం, మరియు L అనేది కండక్టర్ యొక్క పొడవు.
** 3.ఎలక్ట్రికల్ ఇంజనీరింగ్లో రెసిస్టివిటీ ఎందుకు ముఖ్యమైనది? ** రెసిస్టివిటీ ఇంజనీర్లకు విద్యుత్ అనువర్తనాలకు తగిన పదార్థాలను ఎంచుకోవడానికి సహాయపడుతుంది, సర్క్యూట్లు మరియు పరికరాల్లో సమర్థవంతమైన వాహకత మరియు పనితీరును నిర్ధారిస్తుంది.
** 4.ఉష్ణోగ్రత రెసిస్టివిటీని ప్రభావితం చేస్తుందా? ** అవును, రెసిస్టివిటీ ఉష్ణోగ్రతతో మారవచ్చు.చాలా పదార్థాలు అధిక ఉష్ణోగ్రతల వద్ద పెరిగిన రెసిస్టివిటీని ప్రదర్శిస్తాయి.
** 5.రెసిస్టివిటీ కాలిక్యులేటర్ను నేను ఎక్కడ కనుగొనగలను? ** మీరు [రెసిస్టివిటీ కాలిక్యులేటర్] (H వద్ద మా వెబ్సైట్లో రెసిస్టివిటీ కాలిక్యులేటర్ను యాక్సెస్ చేయవచ్చు ttps: //www.inaam.co/unit-converter/electrical_resistance).
ఈ సమగ్ర గైడ్ను రెసిస్టివిటీకి ఉపయోగించడం ద్వారా, మీరు విద్యుత్ లక్షణాలపై మీ అవగాహనను పెంచుకోవచ్చు మరియు మీ ప్రాజెక్టుల సామర్థ్యాన్ని మెరుగుపరచవచ్చు.మరిన్ని సాధనాలు మరియు వనరుల కోసం, మా వెబ్సైట్ను అన్వేషించండి మరియు మీ ఎలక్ట్రికల్ ఇంజనీరింగ్ ప్రయత్నాలలో మేము మీకు ఎలా సహాయపడతామో తెలుసుకోండి.
సిమెన్స్ (సింబల్: ఎస్) అనేది విద్యుత్ ప్రవర్తన యొక్క SI యూనిట్, దీనికి జర్మన్ ఇంజనీర్ ఎర్నెస్ట్ వెర్నర్ వాన్ సిమెన్స్ పేరు పెట్టారు.ఇది కండక్టర్ ద్వారా విద్యుత్ ప్రవాహం ఎంత తేలికగా ప్రవహిస్తుందో ఇది అంచనా వేస్తుంది.అధిక సిమెన్స్ విలువ, ఎక్కువ ప్రవర్తన, ఇది విద్యుత్ ప్రవాహ ప్రవాహానికి తక్కువ నిరోధకతను సూచిస్తుంది.
సిమెన్స్ ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్ల (SI) లో భాగం మరియు ఇది విద్యుత్ నిరోధకత యొక్క యూనిట్ అయిన ఓం (ω) యొక్క పరస్పరం అని నిర్వచించబడింది.ఈ ప్రామాణీకరణ ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో వివిధ అనువర్తనాల్లో స్థిరమైన కొలతలను అనుమతిస్తుంది.
విద్యుత్ ప్రవర్తన యొక్క భావన 19 వ శతాబ్దంలో అభివృద్ధి చేయబడింది, ఎర్నెస్ట్ సిమెన్స్ దాని స్థాపనలో కీలకమైన వ్యక్తి.సిమెన్స్ యూనిట్ 1881 లో అధికారికంగా స్వీకరించబడింది మరియు అప్పటి నుండి ఎలక్ట్రికల్ ఇంజనీరింగ్లో ప్రాథమిక యూనిట్గా అవతరించింది, ఇది సాంకేతిక పరిజ్ఞానం మరియు విద్యుత్ దృగ్విషయాల అవగాహనలో పురోగతిని ప్రతిబింబిస్తుంది.
సిమెన్స్ వాడకాన్ని వివరించడానికి, ఒక సర్క్యూట్ను పరిగణించండి, ఇక్కడ ఒక రెసిస్టర్కు 5 ఓంల నిరోధకత ఉంటుంది.ప్రవర్తన (జి) ను ఈ క్రింది విధంగా లెక్కించవచ్చు:
[ G = \frac{1}{R} = \frac{1}{5 , \Omega} = 0.2 , S ]
దీని అర్థం రెసిస్టర్ 0.2 సిమెన్స్ యొక్క ప్రవర్తనను కలిగి ఉంది, ఇది కొంత మొత్తంలో కరెంట్ దాని గుండా వెళ్ళడానికి అనుమతిస్తుంది.
ఎలక్ట్రికల్ ఇంజనీరింగ్, టెలికమ్యూనికేషన్స్ మరియు భౌతిక శాస్త్రంతో సహా వివిధ రంగాలలో సిమెన్స్ విస్తృతంగా ఉపయోగించబడుతుంది.పదార్థాల ప్రవర్తనను లెక్కించడానికి, సర్క్యూట్లను రూపకల్పన చేయడానికి మరియు విద్యుత్ వ్యవస్థలను విశ్లేషించడానికి ఇది చాలా అవసరం.
మా వెబ్సైట్లోని సిమెన్స్ సాధనంతో సంభాషించడానికి, ఈ దశలను అనుసరించండి:
** సిమెన్స్లో ఓంలలో ప్రతిఘటనను ఎలా ప్రవర్తనగా మార్చగలను? .
** నేను ఇతర విద్యుత్ గణనల కోసం సిమెన్స్ సాధనాన్ని ఉపయోగించవచ్చా? **
సిమెన్స్ సాధనాన్ని సమర్థవంతంగా ఉపయోగించడం ద్వారా, వినియోగదారులు విద్యుత్ ప్రవర్తనపై వారి అవగాహనను పెంచుకోవచ్చు, ఇది ఇంజనీరింగ్ మరియు శాస్త్రీయ సందర్భాలలో మెరుగైన నిర్ణయం తీసుకోవడానికి దారితీస్తుంది.