1 ρ = 1,000 mΩ
1 mΩ = 0.001 ρ
ఉదాహరణ:
15 రెసిస్టివిటీ ను ఓం యొక్క వెయ్యవ వంతు గా మార్చండి:
15 ρ = 15,000 mΩ
రెసిస్టివిటీ | ఓం యొక్క వెయ్యవ వంతు |
---|---|
0.01 ρ | 10 mΩ |
0.1 ρ | 100 mΩ |
1 ρ | 1,000 mΩ |
2 ρ | 2,000 mΩ |
3 ρ | 3,000 mΩ |
5 ρ | 5,000 mΩ |
10 ρ | 10,000 mΩ |
20 ρ | 20,000 mΩ |
30 ρ | 30,000 mΩ |
40 ρ | 40,000 mΩ |
50 ρ | 50,000 mΩ |
60 ρ | 60,000 mΩ |
70 ρ | 70,000 mΩ |
80 ρ | 80,000 mΩ |
90 ρ | 90,000 mΩ |
100 ρ | 100,000 mΩ |
250 ρ | 250,000 mΩ |
500 ρ | 500,000 mΩ |
750 ρ | 750,000 mΩ |
1000 ρ | 1,000,000 mΩ |
10000 ρ | 10,000,000 mΩ |
100000 ρ | 100,000,000 mΩ |
రెసిస్టివిటీ, సింబల్ ρ (RHO) ద్వారా సూచించబడుతుంది, ఇది పదార్థాల యొక్క ప్రాథమిక ఆస్తి, ఇది విద్యుత్ ప్రవాహాన్ని ఎంత బలంగా అడ్డుకుంటుంది.ఇది ఓం-మీటర్లలో (ω · M) కొలుస్తారు మరియు వివిధ పదార్థాలలో విద్యుత్ వాహకతను అర్థం చేసుకోవడానికి ఇది చాలా ముఖ్యమైనది.తక్కువ రెసిస్టివిటీ, మెరుగ్గా పదార్థం విద్యుత్తును నిర్వహిస్తుంది, ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు మెటీరియల్స్ సైన్స్ లో ఈ కొలత చాలా ముఖ్యమైనది.
ఉష్ణోగ్రత మరియు పదార్థ కూర్పుతో సహా వివిధ పరిస్థితులలో రెసిస్టివిటీ ప్రామాణీకరించబడుతుంది.ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్ల (SI) ఒక నిర్దిష్ట ఉష్ణోగ్రత వద్ద ఒక పదార్థం యొక్క ప్రతిఘటనను నిర్వచిస్తుంది, సాధారణంగా లోహాలకు 20 ° C.ఈ ప్రామాణీకరణ వేర్వేరు అనువర్తనాలు మరియు పరిశ్రమలలో స్థిరమైన కొలతలను అనుమతిస్తుంది.
19 వ శతాబ్దంలో ప్రారంభమైనప్పటి నుండి రెసిస్టివిటీ భావన గణనీయంగా అభివృద్ధి చెందింది.జార్జ్ సైమన్ ఓం వంటి ప్రారంభ శాస్త్రవేత్తలు విద్యుత్ నిరోధకతను అర్థం చేసుకోవడానికి పునాది వేశారు.కాలక్రమేణా, మెటీరియల్ సైన్స్ మరియు ఎలక్ట్రికల్ ఇంజనీరింగ్లో పురోగతులు రెసిస్టివిటీపై మన అవగాహనను మెరుగుపరిచాయి, ఇది మరింత సమర్థవంతమైన పదార్థాలు మరియు సాంకేతిక పరిజ్ఞానాల అభివృద్ధికి దారితీసింది.
రెసిస్టివిటీని లెక్కించడానికి, సూత్రాన్ని ఉపయోగించండి: [ ρ = R \times \frac{A}{L} ] ఎక్కడ:
ఉదాహరణకు, ఒక రాగి తీగకు 5 of యొక్క నిరోధకత, 0.001 m² యొక్క క్రాస్ సెక్షనల్ ప్రాంతం మరియు 10 మీటర్ల పొడవు ఉంటే, రెసిస్టివిటీ ఉంటుంది: [ ρ = 5 \times \frac{0.001}{10} = 0.0005 , Ω·m ]
ఎలక్ట్రికల్ ఇంజనీరింగ్, ఎలక్ట్రానిక్స్ మరియు మెటీరియల్స్ సైన్స్ లో రెసిస్టివిటీని విస్తృతంగా ఉపయోగిస్తారు.ఎలక్ట్రికల్ కండక్టివిటీ కీలకమైన వైరింగ్, సర్క్యూట్ డిజైన్ మరియు ఇతర అనువర్తనాల కోసం ఇంజనీర్లకు తగిన పదార్థాలను ఎంచుకోవడానికి ఇది సహాయపడుతుంది.పదార్థాల ఉష్ణ మరియు విద్యుత్ లక్షణాల విశ్లేషణలో రెసిస్టివిటీని అర్థం చేసుకోవడం కూడా సహాయపడుతుంది.
మా వెబ్సైట్లోని రెసిస్టివిటీ సాధనంతో సంభాషించడానికి, ఈ సాధారణ దశలను అనుసరించండి:
** 1.రెసిస్టివిటీ అంటే ఏమిటి? ** ఓమ్-మీటర్లలో (ω · M) వ్యక్తీకరించబడిన విద్యుత్ ప్రవాహాన్ని ఒక పదార్థం ఎంత బలంగా వ్యతిరేకిస్తుందో రెసిస్టివిటీ అనేది కొలత.
** 2.నేను రెసిస్టివిటీని ఎలా లెక్కించగలను? ** మీరు \ (ρ = r \ సార్లు \ frac {a} {l} ) సూత్రాన్ని ఉపయోగించి రెసిస్టివిటీని లెక్కించవచ్చు, ఇక్కడ R నిరోధకత, A అనేది క్రాస్ సెక్షనల్ ప్రాంతం, మరియు L అనేది కండక్టర్ యొక్క పొడవు.
** 3.ఎలక్ట్రికల్ ఇంజనీరింగ్లో రెసిస్టివిటీ ఎందుకు ముఖ్యమైనది? ** రెసిస్టివిటీ ఇంజనీర్లకు విద్యుత్ అనువర్తనాలకు తగిన పదార్థాలను ఎంచుకోవడానికి సహాయపడుతుంది, సర్క్యూట్లు మరియు పరికరాల్లో సమర్థవంతమైన వాహకత మరియు పనితీరును నిర్ధారిస్తుంది.
** 4.ఉష్ణోగ్రత రెసిస్టివిటీని ప్రభావితం చేస్తుందా? ** అవును, రెసిస్టివిటీ ఉష్ణోగ్రతతో మారవచ్చు.చాలా పదార్థాలు అధిక ఉష్ణోగ్రతల వద్ద పెరిగిన రెసిస్టివిటీని ప్రదర్శిస్తాయి.
** 5.రెసిస్టివిటీ కాలిక్యులేటర్ను నేను ఎక్కడ కనుగొనగలను? ** మీరు [రెసిస్టివిటీ కాలిక్యులేటర్] (H వద్ద మా వెబ్సైట్లో రెసిస్టివిటీ కాలిక్యులేటర్ను యాక్సెస్ చేయవచ్చు ttps: //www.inaam.co/unit-converter/electrical_resistance).
ఈ సమగ్ర గైడ్ను రెసిస్టివిటీకి ఉపయోగించడం ద్వారా, మీరు విద్యుత్ లక్షణాలపై మీ అవగాహనను పెంచుకోవచ్చు మరియు మీ ప్రాజెక్టుల సామర్థ్యాన్ని మెరుగుపరచవచ్చు.మరిన్ని సాధనాలు మరియు వనరుల కోసం, మా వెబ్సైట్ను అన్వేషించండి మరియు మీ ఎలక్ట్రికల్ ఇంజనీరింగ్ ప్రయత్నాలలో మేము మీకు ఎలా సహాయపడతామో తెలుసుకోండి.
మిల్లియోహ్మ్ (MΩ) గా సూచించబడిన ఓహ్మ్ యొక్క వెయ్యి వంతు, అంతర్జాతీయ వ్యవస్థ యొక్క యూనిట్ల (SI) లో విద్యుత్ నిరోధకత యొక్క యూనిట్.ఇది ఓంలో వెయ్యి వంతును సూచిస్తుంది, ఇది విద్యుత్ నిరోధకతను కొలవడానికి ప్రామాణిక యూనిట్.ఈ యూనిట్ వివిధ విద్యుత్ అనువర్తనాలలో కీలకం, ముఖ్యంగా తక్కువ-నిరోధక కొలతలలో, ఇక్కడ ఖచ్చితత్వం చాలా ముఖ్యమైనది.
మిల్లియోహెచ్ఎమ్ SI వ్యవస్థ క్రింద ప్రామాణికం చేయబడింది మరియు ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో విస్తృతంగా ఉపయోగించబడుతుంది.ఎలక్ట్రికల్ సర్క్యూట్లతో పనిచేసే ఇంజనీర్లు మరియు సాంకేతిక నిపుణులకు ఓంలు మరియు మిల్లియోహెచ్ల మధ్య సంబంధాన్ని అర్థం చేసుకోవడం చాలా అవసరం, ఎందుకంటే ఇది ఖచ్చితమైన లెక్కలు మరియు కొలతలను అనుమతిస్తుంది.
విద్యుత్ నిరోధకత యొక్క భావనను మొదట 19 వ శతాబ్దంలో జార్జ్ సైమన్ ఓం ప్రవేశపెట్టారు, ఇది ఓం యొక్క చట్టం యొక్క సూత్రీకరణకు దారితీసింది.కాలక్రమేణా, సాంకేతిక పరిజ్ఞానం అభివృద్ధి చెందుతున్నప్పుడు, విద్యుత్ భాగాలలో మరింత ఖచ్చితమైన కొలతల అవసరం ఉద్భవించింది, ఇది మిల్లియోహెచ్ఎమ్ వంటి సబ్యూనిట్లకు దారితీస్తుంది.ఈ పరిణామం విద్యుత్ వ్యవస్థల యొక్క పెరుగుతున్న సంక్లిష్టతను మరియు ఖచ్చితమైన నిరోధక కొలతల అవసరాన్ని ప్రతిబింబిస్తుంది.
ఓంలను మిల్లియోహ్మ్స్గా మార్చడానికి, ఓంలలోని ప్రతిఘటన విలువను 1,000 గుణించాలి.ఉదాహరణకు, మీకు 0.5 ఓంల నిరోధకత ఉంటే, మిల్లియోహ్స్లో సమానమైనది: [ 0.5 , \ టెక్స్ట్ {ఓంలు} \ సార్లు 1000 = 500 , \ టెక్స్ట్ {mΩ} ]
పవర్ కేబుల్స్, కనెక్టర్లు మరియు సర్క్యూట్ బోర్డుల వంటి తక్కువ నిరోధకతతో కూడిన అనువర్తనాల్లో మిల్లియోహెచ్ఎమ్లు ముఖ్యంగా ఉపయోగపడతాయి.మిల్లియోహెచ్ఎమ్లలో ఖచ్చితమైన కొలతలు విద్యుత్ భాగాలలో పేలవమైన కనెక్షన్లు లేదా అధిక ఉష్ణ ఉత్పత్తి వంటి సమస్యలను గుర్తించడంలో సహాయపడతాయి.
మా వెబ్సైట్లో మిల్లియోహెచ్ఎమ్ కన్వర్టర్ సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి:
మరింత సమాచారం కోసం మరియు మిల్లియోహెచ్ఎమ్ కన్వర్టర్ సాధనాన్ని యాక్సెస్ చేయడానికి, [ఇనాయమ్ ఎలక్ట్రికల్ రెసిస్టెన్స్ కన్వర్టర్] (https://www.inaaim.co/unit-converter/electrical_resistance ని సందర్శించండి ).ఈ సాధనాన్ని ఉపయోగించడం ద్వారా, మీరు మీ విద్యుత్ గణనలను మెరుగుపరచవచ్చు మరియు మీ ప్రాజెక్టుల ఖచ్చితత్వాన్ని మెరుగుపరచవచ్చు.