1 N = 1 mol/kg
1 mol/kg = 1 N
ఉదాహరణ:
15 సాధారణత ను మొలాలిటీ గా మార్చండి:
15 N = 15 mol/kg
సాధారణత | మొలాలిటీ |
---|---|
0.01 N | 0.01 mol/kg |
0.1 N | 0.1 mol/kg |
1 N | 1 mol/kg |
2 N | 2 mol/kg |
3 N | 3 mol/kg |
5 N | 5 mol/kg |
10 N | 10 mol/kg |
20 N | 20 mol/kg |
30 N | 30 mol/kg |
40 N | 40 mol/kg |
50 N | 50 mol/kg |
60 N | 60 mol/kg |
70 N | 70 mol/kg |
80 N | 80 mol/kg |
90 N | 90 mol/kg |
100 N | 100 mol/kg |
250 N | 250 mol/kg |
500 N | 500 mol/kg |
750 N | 750 mol/kg |
1000 N | 1,000 mol/kg |
10000 N | 10,000 mol/kg |
100000 N | 100,000 mol/kg |
నార్మాలిటీ (ఎన్) అనేది ఒక లీటరు ద్రావణానికి ద్రావణం యొక్క సమానమైన సంఖ్యకు సమానమైన ఏకాగ్రత యొక్క కొలత.ఇది యాసిడ్-బేస్ కెమిస్ట్రీలో ముఖ్యంగా ఉపయోగపడుతుంది, ఇక్కడ ఇది ఒక పరిష్కారం యొక్క రియాక్టివ్ సామర్థ్యాన్ని లెక్కించడానికి సహాయపడుతుంది.ఖచ్చితమైన రసాయన లెక్కలు మరియు ప్రతిచర్యలకు సాధారణతను అర్థం చేసుకోవడం అవసరం.
ప్రాధమిక ప్రమాణానికి వ్యతిరేకంగా నార్మాలిటీ తరచుగా ప్రామాణీకరించబడుతుంది, ఇది చాలా స్వచ్ఛమైన పదార్ధం, ఇది ద్రావణం యొక్క ఏకాగ్రతను నిర్ణయించడానికి ఉపయోగపడుతుంది.ఈ ప్రక్రియ ఒక పరిష్కారం యొక్క సాధారణత ఖచ్చితమైనది మరియు నమ్మదగినదని నిర్ధారిస్తుంది, ఇది ప్రయోగశాల పని మరియు పారిశ్రామిక అనువర్తనాలకు కీలకం.
19 వ శతాబ్దం చివరలో నార్మాలిటీ భావన ప్రవేశపెట్టబడింది, ఎందుకంటే ఆమ్లాలు మరియు స్థావరాలతో కూడిన ప్రతిచర్యలలో సాంద్రతలను వ్యక్తీకరించడానికి రసాయన శాస్త్రవేత్తలు మరింత ఆచరణాత్మక మార్గాన్ని కోరింది.కాలక్రమేణా, విశ్లేషణాత్మక కెమిస్ట్రీలో పురోగతితో పాటు నార్మాలిటీ అభివృద్ధి చెందింది, ఇది ప్రపంచవ్యాప్తంగా ప్రయోగశాలలలో ప్రామాణిక కొలతగా మారింది.
సాధారణతను లెక్కించడానికి, సూత్రాన్ని ఉపయోగించండి: [ \text{Normality (N)} = \frac{\text{Number of equivalents of solute}}{\text{Volume of solution in liters}} ]
ఉదాహరణకు, మీరు 1 లీటరు నీటిలో 1 మోల్ సల్ఫ్యూరిక్ ఆమ్లం (H₂So₄) ను కరిగించినట్లయితే, సల్ఫ్యూరిక్ ఆమ్లం 2 ప్రోటాన్లు (H⁺) దానం చేయగలదు కాబట్టి, సాధారణం ఉంటుంది: [ \text{Normality} = \frac{2 \text{ equivalents}}{1 \text{ L}} = 2 N ]
ద్రావకం యొక్క రియాక్టివిటీ ముఖ్యమైన టైట్రేషన్స్ మరియు ఇతర రసాయన ప్రతిచర్యలలో సాధారణంగా నార్మాలిటీ ఉపయోగించబడుతుంది.మొలారిటీతో పోలిస్తే రియాక్టివ్ జాతులతో వ్యవహరించేటప్పుడు ఇది ఏకాగ్రత యొక్క మరింత ఖచ్చితమైన ప్రాతినిధ్యాన్ని అందిస్తుంది.
సాధారణ సాధనంతో సంభాషించడానికి, ఈ దశలను అనుసరించండి:
** కెమిస్ట్రీలో సాధారణ స్థితి ఏమిటి? ** నార్మాలిటీ అనేది ఏకాగ్రత యొక్క కొలత, ఇది లీటరు ద్రావణానికి ద్రావణం యొక్క సమానమైన సంఖ్యను సూచిస్తుంది, దీనిని సాధారణంగా యాసిడ్-బేస్ ప్రతిచర్యలలో ఉపయోగిస్తారు.
** నేను సాధారణతను ఎలా లెక్కించగలను? ** సాధారణతను లెక్కించడానికి, సూత్రాన్ని ఉపయోగించి లీటర్లలో ద్రావణం యొక్క వాల్యూమ్ ద్వారా ద్రావణం యొక్క సమానమైన సంఖ్యను విభజించండి: సాధారణ (n) = సమానమైన / వాల్యూమ్ (L).
** నేను మోలారిటీకి బదులుగా సాధారణతను ఎప్పుడు ఉపయోగించాలి? ** రసాయన ప్రతిచర్యలలో, ముఖ్యంగా యాసిడ్-బేస్ టైట్రేషన్లలో రియాక్టివ్ జాతులతో వ్యవహరించేటప్పుడు సాధారణతను ఉపయోగించండి, ఇక్కడ రియాక్టివ్ యూనిట్ల సంఖ్య చాలా ముఖ్యమైనది.
** నార్మాలిటీ మరియు మోలారిటీ మధ్య తేడా ఏమిటి? ** ఒక ద్రావణంలో రియాక్టివ్ యూనిట్ల (సమానమైన) సంఖ్యకు నార్మాలిటీ కారణమవుతుంది, అయితే మొలారిటీ ఒక లీటరుకు ద్రావణం యొక్క మొత్తం మోల్స్ సంఖ్యను కొలుస్తుంది.
** నేను సాధారణతను మోలారిటీగా మార్చగలనా? ** అవును, మీరు నిర్దిష్ట ప్రతిచర్య లేదా సందర్భాన్ని బట్టి ద్రావణానికి సమానమైన సంఖ్య ద్వారా సాధారణతను విభజించడం ద్వారా మీరు సాధారణతను మొలారిటీగా మార్చవచ్చు.
మరింత సమాచారం కోసం మరియు సాధారణ సాధనాన్ని ఉపయోగించుకోవడానికి, [ఇనాయమ్ యొక్క నార్మాలిటీ కాలిక్యులేటర్] (https://www.inaaim.co/unit-converter/concentrat ని సందర్శించండి అయాన్_మోలార్).ఈ సాధనం మీ లెక్కలను మెరుగుపరచడానికి మరియు రసాయన సాంద్రతలపై మీ అవగాహనను మెరుగుపరచడానికి రూపొందించబడింది.
మోలాలిటీ, మోల్/కేజీగా సూచించబడుతుంది, ఇది ఏకాగ్రత యొక్క కొలత, ఇది కిలోగ్రాము ద్రావకానికి ద్రావణం యొక్క మోల్స్ సంఖ్యను వ్యక్తపరుస్తుంది.ఈ యూనిట్ కెమిస్ట్రీలో ముఖ్యంగా ఉపయోగపడుతుంది, ప్రత్యేకించి ఉష్ణోగ్రత వైవిధ్యాలతో వ్యవహరించేటప్పుడు, ఉష్ణోగ్రత మార్పులతో సంభవించే వాల్యూమ్లో మార్పుల ద్వారా ఇది ప్రభావితం కాదు.
శాస్త్రీయ సందర్భాలలో మోలాలిటీ ప్రామాణికం చేయబడింది, ఈ యూనిట్ను ఉపయోగించి చేసిన లెక్కలు మరియు పోలికలు స్థిరమైనవి మరియు నమ్మదగినవి అని నిర్ధారిస్తుంది.ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్ల (SI) ఏకాగ్రతను వ్యక్తీకరించడానికి మోలాలిటీని కీలకమైన మెట్రిక్గా గుర్తిస్తుంది, ప్రత్యేకించి ద్రావకం యొక్క ద్రవ్యరాశి దాని వాల్యూమ్ కంటే ఎక్కువ సంబంధిత పరిష్కారాలలో.
19 వ శతాబ్దం చివరలో మోలాలిటీ భావన ఉద్భవించింది, ఎందుకంటే రసాయన శాస్త్రవేత్తలు ఏకాగ్రతను వ్యక్తీకరించడానికి మరింత ఖచ్చితమైన మార్గాలను కోరింది, ముఖ్యంగా పరిష్కారాలలో.వాల్యూమ్ మీద ఆధారపడిన మొలారిటీ మాదిరిగా కాకుండా, మోలాలిటీ మరింత స్థిరమైన కొలతను అందిస్తుంది, ఇది ఉష్ణోగ్రత మరియు పీడనం ద్వారా తక్కువ ప్రభావితమవుతుంది.ఈ పరిణామం మోలాలిటీని ఆధునిక కెమిస్ట్రీ యొక్క ప్రాథమిక అంశంగా మార్చింది.
మోలాలిటీని లెక్కించడానికి, సూత్రాన్ని ఉపయోగించండి:
[ \text{Molality (m)} = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} ]
ఉదాహరణకు, మీరు 1 కిలోల నీటిలో 2 మోల్స్ సోడియం క్లోరైడ్ (NaCl) ను కరిగించినట్లయితే, ద్రావణం యొక్క మొలాలిటీ ఉంటుంది:
[ m = \frac{2 \text{ moles}}{1 \text{ kg}} = 2 \text{ mol/kg} ]
కెమిస్ట్రీ, బయోకెమిస్ట్రీ మరియు ఎన్విరాన్మెంటల్ సైన్స్ సహా వివిధ రంగాలలో మోలాలిటీ విస్తృతంగా ఉపయోగించబడుతుంది.ఉష్ణోగ్రత మార్పులు ద్రావణం యొక్క పరిమాణాన్ని ప్రభావితం చేసే పరిస్థితులలో ఇది చాలా విలువైనది, ఇది ఖచ్చితమైన శాస్త్రీయ లెక్కలకు అవసరమైన మెట్రిక్గా మారుతుంది.
మా మోలాలిటీ సాధనంతో సంభాషించడానికి, ఈ దశలను అనుసరించండి:
మోలాలిటీ సాధనాన్ని సమర్థవంతంగా ప్రభావితం చేయడం ద్వారా, వినియోగదారులు పరిష్కార సాంద్రతలపై వారి అవగాహనను పెంచుకోవచ్చు, వారి శాస్త్రీయ ప్రయత్నాలలో ఖచ్చితమైన మరియు నమ్మదగిన ఫలితాలను నిర్ధారిస్తారు.