1 S/cm = 1 ℧
1 ℧ = 1 S/cm
ఉదాహరణ:
15 UNIT_CONVERTER.electrical_conductance.metric.siemens_per_centi_meter ను మో గా మార్చండి:
15 S/cm = 15 ℧
UNIT_CONVERTER.electrical_conductance.metric.siemens_per_centi_meter | మో |
---|---|
0.01 S/cm | 0.01 ℧ |
0.1 S/cm | 0.1 ℧ |
1 S/cm | 1 ℧ |
2 S/cm | 2 ℧ |
3 S/cm | 3 ℧ |
5 S/cm | 5 ℧ |
10 S/cm | 10 ℧ |
20 S/cm | 20 ℧ |
30 S/cm | 30 ℧ |
40 S/cm | 40 ℧ |
50 S/cm | 50 ℧ |
60 S/cm | 60 ℧ |
70 S/cm | 70 ℧ |
80 S/cm | 80 ℧ |
90 S/cm | 90 ℧ |
100 S/cm | 100 ℧ |
250 S/cm | 250 ℧ |
500 S/cm | 500 ℧ |
750 S/cm | 750 ℧ |
1000 S/cm | 1,000 ℧ |
10000 S/cm | 10,000 ℧ |
100000 S/cm | 100,000 ℧ |
సిమెన్స్ సెంటీమీటర్ (S/CM) అనేది విద్యుత్ ప్రవర్తన కోసం కొలత యొక్క యూనిట్, ఇది ఒక పదార్థం ద్వారా విద్యుత్ ఎంత తేలికగా ప్రవహిస్తుందో అంచనా వేస్తుంది.S/cm లో ఎక్కువ విలువ, పదార్థం విద్యుత్తును నిర్వహిస్తుంది.ఎలక్ట్రికల్ ఇంజనీరింగ్, ఫిజిక్స్ మరియు కెమిస్ట్రీ మరియు ఎన్విరాన్మెంటల్ సైన్స్ వంటి వివిధ అనువర్తనాలు వంటి రంగాలలో ఈ యూనిట్ ముఖ్యంగా సంబంధితంగా ఉంటుంది.
సిమెన్స్ (లు) అనేది విద్యుత్ ప్రవర్తన యొక్క SI యూనిట్, దీనికి జర్మన్ ఆవిష్కర్త ఎర్నెస్ట్ వెర్నర్ వాన్ సిమెన్స్ పేరు పెట్టారు.ఒక సిమెన్స్ వోల్ట్కు ఒక ఆంపిరేకు సమానం (1 s = 1 a/v).సెంటీమీటర్ (సిఎం) అనేది పొడవు యొక్క మెట్రిక్ యూనిట్, మరియు కలిపినప్పుడు, ఎస్/సెం.మీ యూనిట్ పొడవుకు ప్రామాణికమైన ప్రవర్తనను అందిస్తుంది, దీనివల్ల పదార్థాలు మరియు వాటి వాహక లక్షణాలను పోల్చడం సులభం అవుతుంది.
విద్యుత్ యొక్క ప్రారంభ ఆవిష్కరణల నుండి విద్యుత్ ప్రవర్తన యొక్క భావన గణనీయంగా అభివృద్ధి చెందింది.సిమెన్స్ యూనిట్ 19 వ శతాబ్దం చివరలో ప్రవేశపెట్టబడింది, ఇది విద్యుత్ లక్షణాలపై పెరుగుతున్న అవగాహనను ప్రతిబింబిస్తుంది.కాలక్రమేణా, వివిధ శాస్త్రీయ మరియు ఇంజనీరింగ్ అనువర్తనాలలో ఖచ్చితమైన కొలతల అవసరం పరిష్కారాలు మరియు పదార్థాలలో ప్రవర్తనను కొలవడానికి ప్రామాణిక యూనిట్గా S/CM ను స్వీకరించడానికి దారితీసింది.
S/cm వాడకాన్ని వివరించడానికి, 5 s/cm ప్రవర్తనతో పరిష్కారాన్ని పరిగణించండి.మీరు 10 సెం.మీ పొడవుతో స్థూపాకార కండక్టర్ కలిగి ఉంటే, మొత్తం ప్రవర్తనను సూత్రాన్ని ఉపయోగించి లెక్కించవచ్చు: [ \ టెక్స్ట్ {మొత్తం ప్రవర్తన} = \ టెక్స్ట్ {యూనిట్ పొడవుకు ప్రవర్తన} \ సార్లు \ టెక్స్ట్ {పొడవు} ] [ \ టెక్స్ట్ {మొత్తం ప్రవర్తన} = 5 , \ టెక్స్ట్ {s/cm} \ సార్లు 10 , \ టెక్స్ట్ {cm} = 50 , \ టెక్స్ట్ {s} ]
సెమెన్స్ సెమెంట్స్ సెమెంట్స్ సాధారణంగా వివిధ అనువర్తనాల్లో ఉపయోగించబడుతుంది, వీటిలో:
సెమెన్స్ను సెంటీమీటర్ సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి:
** సెమెన్స్ సెంటీమీటర్ (s/cm) అంటే ఏమిటి? ** .
** నేను s/cm ను ఇతర ప్రవర్తన యూనిట్లుగా ఎలా మార్చగలను? **
మరింత సమాచారం కోసం మరియు సిమెన్స్ సెంటీమీటర్ సాధనాన్ని యాక్సెస్ చేయడానికి, [ఇనాయం యొక్క ఎలక్ట్రికల్ కండక్టెన్స్ కన్వర్టర్] (https://www.inaaim.co/unit-converter/electrical_conductance) సందర్శించండి.
MHO (℧) అనేది విద్యుత్ ప్రవర్తన యొక్క యూనిట్, ఇది ఒక పదార్థం ద్వారా విద్యుత్తు ఎంత తేలికగా ప్రవహిస్తుందో అంచనా వేస్తుంది.ఇది ఓంలు (ω) లో కొలిచిన ప్రతిఘటన యొక్క పరస్పర."MHO" అనే పదం స్పెల్లింగ్ "ఓహ్మ్" వెనుకకు ఉద్భవించింది, ఇది ప్రతిఘటనకు దాని సంబంధాన్ని ప్రతిబింబిస్తుంది.ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో ప్రవర్తన చాలా ముఖ్యమైనది, ఎందుకంటే ఇది సర్క్యూట్లను విశ్లేషించడానికి మరియు వేర్వేరు పదార్థాలు విద్యుత్తును ఎలా నిర్వహిస్తాయో అర్థం చేసుకోవడానికి సహాయపడుతుంది.
MHO అంతర్జాతీయ వ్యవస్థ ఆఫ్ యూనిట్ల (SI) లో భాగం మరియు సాధారణంగా దీనిని ఇతర ఎలక్ట్రికల్ యూనిట్లతో కలిపి ఉపయోగిస్తారు.ప్రవర్తన యొక్క ప్రామాణిక యూనిట్ సిమెన్స్ (లు), ఇక్కడ 1 MHO 1 సిమెన్స్కు సమానం.ఈ ప్రామాణీకరణ వివిధ అనువర్తనాలు మరియు పరిశ్రమలలో స్థిరమైన కొలతలను అనుమతిస్తుంది.
విద్యుత్ యొక్క ప్రారంభ రోజుల నుండి విద్యుత్ ప్రవర్తన యొక్క భావన గణనీయంగా అభివృద్ధి చెందింది.ఎలక్ట్రికల్ ఇంజనీరింగ్ ఆకృతిని ప్రారంభించినందున "MHO" అనే పదాన్ని 19 వ శతాబ్దం చివరలో మొదట ప్రవేశపెట్టారు.కాలక్రమేణా, విద్యుత్ వ్యవస్థలు మరింత క్లిష్టంగా మారడంతో, ప్రవర్తనపై స్పష్టమైన అవగాహన అవసరం MHO ను ప్రామాణిక యూనిట్గా విస్తృతంగా స్వీకరించడానికి దారితీసింది.
MHO ను ఎలా ఉపయోగించాలో వివరించడానికి, 5 ఓంల నిరోధకత కలిగిన సర్క్యూట్ను పరిగణించండి.సూత్రాన్ని ఉపయోగించి ప్రవర్తన (జి) ను లెక్కించవచ్చు:
[ G = \frac{1}{R} ]
ఎక్కడ:
మా ఉదాహరణ కోసం:
[ G = \frac{1}{5} = 0.2 , \text{mho} ]
దీని అర్థం సర్క్యూట్ 0.2 MHO ల ప్రవర్తనను కలిగి ఉంది, ఇది విద్యుత్ ప్రవాహాన్ని ఎంతవరకు నిర్వహించగలదో సూచిస్తుంది.
ఎలక్ట్రికల్ ఇంజనీరింగ్, ఫిజిక్స్ మరియు ఎలక్ట్రానిక్స్ వంటి వివిధ రంగాలలో MHO విస్తృతంగా ఉపయోగించబడుతుంది.ఇది ఇంజనీర్లకు సర్క్యూట్లను రూపొందించడానికి, పదార్థాల విద్యుత్ లక్షణాలను విశ్లేషించడానికి మరియు విద్యుత్ వ్యవస్థలలో భద్రత మరియు సామర్థ్యాన్ని నిర్ధారించడానికి సహాయపడుతుంది.ఎలక్ట్రికల్ భాగాలు మరియు వ్యవస్థలతో పనిచేసే ఎవరికైనా MHO లలో ప్రవర్తనను అర్థం చేసుకోవడం చాలా అవసరం.
మా వెబ్సైట్లో MHO (℧) సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి:
** 1.MHO మరియు ఓం మధ్య సంబంధం ఏమిటి? ** MHO ఓం యొక్క పరస్పరం.OHM ప్రతిఘటనను కొలుస్తుండగా, MHO ప్రవర్తనను కొలుస్తుంది.సూత్రం G (MHO) = 1/R (OHM).
** 2.నేను ఓఎ లను MHOS గా ఎలా మార్చగలను? ** ఓంలను MHO లగా మార్చడానికి, నిరోధక విలువ యొక్క పరస్పరం తీసుకోండి.ఉదాహరణకు, ప్రతిఘటన 10 ఓంలు అయితే, ప్రవర్తన 1/10 = 0.1 MHO.
** 3.నేను ఆచరణాత్మక అనువర్తనాలలో MHO ను ఉపయోగించవచ్చా? ** అవును, సర్క్యూట్లను విశ్లేషించడానికి మరియు పదార్థ వాహకత అర్థం చేసుకోవడానికి ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో MHO విస్తృతంగా ఉపయోగించబడుతుంది.
** 4.సర్క్యూట్లలో ప్రవర్తన యొక్క ప్రాముఖ్యత ఏమిటి? ** ప్రవర్తన ఈజ్ ఎలా ఉంటుందో సూచిస్తుంది ILY కరెంట్ సర్క్యూట్ ద్వారా ప్రవహిస్తుంది.అధిక ప్రవర్తన అంటే తక్కువ నిరోధకత, ఇది సమర్థవంతమైన సర్క్యూట్ రూపకల్పనకు అవసరం.
** 5.ఎలక్ట్రికల్ యూనిట్లపై నేను మరింత సమాచారం ఎక్కడ కనుగొనగలను? ** మీరు మా వెబ్సైట్లో ఎలక్ట్రికల్ యూనిట్లు మరియు మార్పిడుల గురించి మరింత అన్వేషించవచ్చు, వీటిలో బార్ నుండి పాస్కల్ మరియు టన్ను నుండి KG వంటి వివిధ యూనిట్ల మధ్య మార్చడానికి సాధనాలు ఉన్నాయి.
ఈ MHO (℧) సాధనాన్ని ఉపయోగించడం ద్వారా మరియు దాని ప్రాముఖ్యతను అర్థం చేసుకోవడం ద్వారా, మీరు విద్యుత్ ప్రవర్తనపై మీ జ్ఞానాన్ని పెంచుకోవచ్చు మరియు రంగంలో మీ ఆచరణాత్మక అనువర్తనాలను మెరుగుపరచవచ్చు.