1 µA = 1.0000e-6 ℧
1 ℧ = 1,000,000 µA
ఉదాహరణ:
15 మైక్రోఅంపియర్ ను మో గా మార్చండి:
15 µA = 1.5000e-5 ℧
మైక్రోఅంపియర్ | మో |
---|---|
0.01 µA | 1.0000e-8 ℧ |
0.1 µA | 1.0000e-7 ℧ |
1 µA | 1.0000e-6 ℧ |
2 µA | 2.0000e-6 ℧ |
3 µA | 3.0000e-6 ℧ |
5 µA | 5.0000e-6 ℧ |
10 µA | 1.0000e-5 ℧ |
20 µA | 2.0000e-5 ℧ |
30 µA | 3.0000e-5 ℧ |
40 µA | 4.0000e-5 ℧ |
50 µA | 5.0000e-5 ℧ |
60 µA | 6.0000e-5 ℧ |
70 µA | 7.0000e-5 ℧ |
80 µA | 8.0000e-5 ℧ |
90 µA | 9.0000e-5 ℧ |
100 µA | 1.0000e-4 ℧ |
250 µA | 0 ℧ |
500 µA | 0.001 ℧ |
750 µA | 0.001 ℧ |
1000 µA | 0.001 ℧ |
10000 µA | 0.01 ℧ |
100000 µA | 0.1 ℧ |
మైక్రోఅంపేర్ (µA) అనేది ఒక ఆంపియర్ (ఎ) లో ఒక మిలియన్ వంతుకు సమానమైన విద్యుత్ ప్రవాహం.చిన్న ప్రవాహాలను కొలవడానికి ఇది సాధారణంగా ఎలక్ట్రానిక్స్ మరియు ఎలక్ట్రికల్ ఇంజనీరింగ్లో ఉపయోగించబడుతుంది, ముఖ్యంగా సెన్సార్లు మరియు ఇంటిగ్రేటెడ్ సర్క్యూట్లు వంటి సున్నితమైన పరికరాలలో.తక్కువ-శక్తి అనువర్తనాలు మరియు ఖచ్చితమైన సాధనాలతో పనిచేసే నిపుణులకు మైక్రోఅంపేర్ను అర్థం చేసుకోవడం చాలా అవసరం.
మైక్రోఅంపేర్ ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్స్ (SI) లో భాగం మరియు ఇది ఎలక్ట్రిక్ కరెంట్ యొక్క బేస్ యూనిట్, ఆంపియర్ నుండి తీసుకోబడింది.మైక్రోఅంపేర్ యొక్క చిహ్నం µA, ఇక్కడ "మైక్రో" 10^-6 యొక్క కారకాన్ని సూచిస్తుంది.ఈ ప్రామాణీకరణ వివిధ శాస్త్రీయ మరియు ఇంజనీరింగ్ విభాగాలలో కొలతలలో స్థిరత్వం మరియు ఖచ్చితత్వాన్ని నిర్ధారిస్తుంది.
ఎలక్ట్రిక్ కరెంట్ యొక్క భావన 19 వ శతాబ్దం ప్రారంభంలో ఉంది, ఫ్రెంచ్ భౌతిక శాస్త్రవేత్త ఆండ్రే-మేరీ ఆంపేర్ పేరు పెట్టబడింది.మైక్రోఅంపేర్ టెక్నాలజీగా అభివృద్ధి చెందింది, ముఖ్యంగా తక్కువ ప్రవాహాల యొక్క ఖచ్చితమైన కొలతలు అవసరమయ్యే ఎలక్ట్రానిక్ భాగాల అభివృద్ధితో.పరికరాలు మరింత అధునాతనమైనందున, మైక్రోఅంపేర్ వంటి చిన్న యూనిట్ల అవసరం చాలా ముఖ్యమైనది.
మిల్లియంపెరెస్ (ఎంఏ) ను మైక్రోంపెరెస్ (µA) గా మార్చడానికి, కేవలం 1,000 గుణించాలి.ఉదాహరణకు, మీకు 5 mA కరెంట్ ఉంటే, మైక్రోఅంపెరెస్గా మార్చడం ఉంటుంది:
5 mA × 1,000 = 5,000 µa
వివిధ అనువర్తనాల్లో మైక్రోఅంపెర్స్ విస్తృతంగా ఉపయోగించబడతాయి:
మైక్రోఅంపేర్ మార్పిడి సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి:
** 1.మైక్రోఅంపేర్ అంటే ఏమిటి? ** మైక్రోఅంపేర్ (µA) అనేది ఒక ఆంపియర్ (ఎ) యొక్క ఒక మిలియన్ వంతుకు సమానమైన విద్యుత్ ప్రవాహం, ఇది చిన్న ప్రవాహాలను కొలవడానికి సాధారణంగా ఎలక్ట్రానిక్స్లో ఉపయోగిస్తారు.
** 2.మిల్లియంపెరెస్ను మైక్రోంపెరెస్గా ఎలా మార్చగలను? ** మిల్లియంపెరెస్ (ఎంఏ) ను మైక్రోఅంపెరెస్ (µA) గా మార్చడానికి, MA లోని విలువను 1,000 గుణించాలి.ఉదాహరణకు, 2 mA 2,000 µA కి సమానం.
** 3.ఎలక్ట్రానిక్స్లో మైక్రోఅంపేర్ ఎందుకు ముఖ్యమైనది? ** సున్నితమైన ఎలక్ట్రానిక్ పరికరాల్లో తక్కువ ప్రవాహాలను కొలవడానికి మైక్రోఅంపెర్స్ కీలకమైనవి, ఖచ్చితమైన పనితీరు మరియు కార్యాచరణను నిర్ధారిస్తాయి.
** 4.కరెంట్ యొక్క ఇతర యూనిట్ల కోసం నేను మైక్రోఅంపేర్ సాధనాన్ని ఉపయోగించవచ్చా? ** అవును, ఆంపియర్స్ (ఎ) మరియు మిల్లియంపెరెస్ (ఎంఏ) తో సహా వివిధ యూనిట్లను మార్చడానికి మైక్రోఅంపేర్ మార్పిడి సాధనం మిమ్మల్ని అనుమతిస్తుంది.
** 5.మైక్రోఅంపేర్ మార్పిడి సాధనాన్ని నేను ఎక్కడ కనుగొనగలను? ** మీరు [ఈ లింక్] (https://www.inaam.co/unit-converter/electrical_conductance) వద్ద మైక్రోఅంపేర్ మార్పిడి సాధనాన్ని యాక్సెస్ చేయవచ్చు.
మైక్రోఅంపేర్ సాధనాన్ని ఉపయోగించడం ద్వారా, మీరు విద్యుత్ కొలతలపై మీ అవగాహనను పెంచుకోవచ్చు మరియు వివిధ అనువర్తనాల్లో మీ సామర్థ్యాన్ని మెరుగుపరచవచ్చు.ఈ వనరు ఎలక్ట్రానిక్స్ రంగంలో నిపుణులు మరియు ts త్సాహికులకు మద్దతుగా రూపొందించబడింది.
MHO (℧) అనేది విద్యుత్ ప్రవర్తన యొక్క యూనిట్, ఇది ఒక పదార్థం ద్వారా విద్యుత్తు ఎంత తేలికగా ప్రవహిస్తుందో అంచనా వేస్తుంది.ఇది ఓంలు (ω) లో కొలిచిన ప్రతిఘటన యొక్క పరస్పర."MHO" అనే పదం స్పెల్లింగ్ "ఓహ్మ్" వెనుకకు ఉద్భవించింది, ఇది ప్రతిఘటనకు దాని సంబంధాన్ని ప్రతిబింబిస్తుంది.ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో ప్రవర్తన చాలా ముఖ్యమైనది, ఎందుకంటే ఇది సర్క్యూట్లను విశ్లేషించడానికి మరియు వేర్వేరు పదార్థాలు విద్యుత్తును ఎలా నిర్వహిస్తాయో అర్థం చేసుకోవడానికి సహాయపడుతుంది.
MHO అంతర్జాతీయ వ్యవస్థ ఆఫ్ యూనిట్ల (SI) లో భాగం మరియు సాధారణంగా దీనిని ఇతర ఎలక్ట్రికల్ యూనిట్లతో కలిపి ఉపయోగిస్తారు.ప్రవర్తన యొక్క ప్రామాణిక యూనిట్ సిమెన్స్ (లు), ఇక్కడ 1 MHO 1 సిమెన్స్కు సమానం.ఈ ప్రామాణీకరణ వివిధ అనువర్తనాలు మరియు పరిశ్రమలలో స్థిరమైన కొలతలను అనుమతిస్తుంది.
విద్యుత్ యొక్క ప్రారంభ రోజుల నుండి విద్యుత్ ప్రవర్తన యొక్క భావన గణనీయంగా అభివృద్ధి చెందింది.ఎలక్ట్రికల్ ఇంజనీరింగ్ ఆకృతిని ప్రారంభించినందున "MHO" అనే పదాన్ని 19 వ శతాబ్దం చివరలో మొదట ప్రవేశపెట్టారు.కాలక్రమేణా, విద్యుత్ వ్యవస్థలు మరింత క్లిష్టంగా మారడంతో, ప్రవర్తనపై స్పష్టమైన అవగాహన అవసరం MHO ను ప్రామాణిక యూనిట్గా విస్తృతంగా స్వీకరించడానికి దారితీసింది.
MHO ను ఎలా ఉపయోగించాలో వివరించడానికి, 5 ఓంల నిరోధకత కలిగిన సర్క్యూట్ను పరిగణించండి.సూత్రాన్ని ఉపయోగించి ప్రవర్తన (జి) ను లెక్కించవచ్చు:
[ G = \frac{1}{R} ]
ఎక్కడ:
మా ఉదాహరణ కోసం:
[ G = \frac{1}{5} = 0.2 , \text{mho} ]
దీని అర్థం సర్క్యూట్ 0.2 MHO ల ప్రవర్తనను కలిగి ఉంది, ఇది విద్యుత్ ప్రవాహాన్ని ఎంతవరకు నిర్వహించగలదో సూచిస్తుంది.
ఎలక్ట్రికల్ ఇంజనీరింగ్, ఫిజిక్స్ మరియు ఎలక్ట్రానిక్స్ వంటి వివిధ రంగాలలో MHO విస్తృతంగా ఉపయోగించబడుతుంది.ఇది ఇంజనీర్లకు సర్క్యూట్లను రూపొందించడానికి, పదార్థాల విద్యుత్ లక్షణాలను విశ్లేషించడానికి మరియు విద్యుత్ వ్యవస్థలలో భద్రత మరియు సామర్థ్యాన్ని నిర్ధారించడానికి సహాయపడుతుంది.ఎలక్ట్రికల్ భాగాలు మరియు వ్యవస్థలతో పనిచేసే ఎవరికైనా MHO లలో ప్రవర్తనను అర్థం చేసుకోవడం చాలా అవసరం.
మా వెబ్సైట్లో MHO (℧) సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి:
** 1.MHO మరియు ఓం మధ్య సంబంధం ఏమిటి? ** MHO ఓం యొక్క పరస్పరం.OHM ప్రతిఘటనను కొలుస్తుండగా, MHO ప్రవర్తనను కొలుస్తుంది.సూత్రం G (MHO) = 1/R (OHM).
** 2.నేను ఓఎ లను MHOS గా ఎలా మార్చగలను? ** ఓంలను MHO లగా మార్చడానికి, నిరోధక విలువ యొక్క పరస్పరం తీసుకోండి.ఉదాహరణకు, ప్రతిఘటన 10 ఓంలు అయితే, ప్రవర్తన 1/10 = 0.1 MHO.
** 3.నేను ఆచరణాత్మక అనువర్తనాలలో MHO ను ఉపయోగించవచ్చా? ** అవును, సర్క్యూట్లను విశ్లేషించడానికి మరియు పదార్థ వాహకత అర్థం చేసుకోవడానికి ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో MHO విస్తృతంగా ఉపయోగించబడుతుంది.
** 4.సర్క్యూట్లలో ప్రవర్తన యొక్క ప్రాముఖ్యత ఏమిటి? ** ప్రవర్తన ఈజ్ ఎలా ఉంటుందో సూచిస్తుంది ILY కరెంట్ సర్క్యూట్ ద్వారా ప్రవహిస్తుంది.అధిక ప్రవర్తన అంటే తక్కువ నిరోధకత, ఇది సమర్థవంతమైన సర్క్యూట్ రూపకల్పనకు అవసరం.
** 5.ఎలక్ట్రికల్ యూనిట్లపై నేను మరింత సమాచారం ఎక్కడ కనుగొనగలను? ** మీరు మా వెబ్సైట్లో ఎలక్ట్రికల్ యూనిట్లు మరియు మార్పిడుల గురించి మరింత అన్వేషించవచ్చు, వీటిలో బార్ నుండి పాస్కల్ మరియు టన్ను నుండి KG వంటి వివిధ యూనిట్ల మధ్య మార్చడానికి సాధనాలు ఉన్నాయి.
ఈ MHO (℧) సాధనాన్ని ఉపయోగించడం ద్వారా మరియు దాని ప్రాముఖ్యతను అర్థం చేసుకోవడం ద్వారా, మీరు విద్యుత్ ప్రవర్తనపై మీ జ్ఞానాన్ని పెంచుకోవచ్చు మరియు రంగంలో మీ ఆచరణాత్మక అనువర్తనాలను మెరుగుపరచవచ్చు.