1 Ω/S = 1 V/℧
1 V/℧ = 1 Ω/S
ఉదాహరణ:
15 ఓం పర్ సిమెన్స్ ను వోల్ట్ పర్ Mho గా మార్చండి:
15 Ω/S = 15 V/℧
ఓం పర్ సిమెన్స్ | వోల్ట్ పర్ Mho |
---|---|
0.01 Ω/S | 0.01 V/℧ |
0.1 Ω/S | 0.1 V/℧ |
1 Ω/S | 1 V/℧ |
2 Ω/S | 2 V/℧ |
3 Ω/S | 3 V/℧ |
5 Ω/S | 5 V/℧ |
10 Ω/S | 10 V/℧ |
20 Ω/S | 20 V/℧ |
30 Ω/S | 30 V/℧ |
40 Ω/S | 40 V/℧ |
50 Ω/S | 50 V/℧ |
60 Ω/S | 60 V/℧ |
70 Ω/S | 70 V/℧ |
80 Ω/S | 80 V/℧ |
90 Ω/S | 90 V/℧ |
100 Ω/S | 100 V/℧ |
250 Ω/S | 250 V/℧ |
500 Ω/S | 500 V/℧ |
750 Ω/S | 750 V/℧ |
1000 Ω/S | 1,000 V/℧ |
10000 Ω/S | 10,000 V/℧ |
100000 Ω/S | 100,000 V/℧ |
విద్యుత్ ప్రవర్తన అనేది ఒక పదార్థం ద్వారా విద్యుత్తు ఎంత తేలికగా ప్రవహిస్తుందో కొలత.ఇది ప్రతిఘటన యొక్క పరస్పరం మరియు సిమెన్స్ (ల) యూనిట్లలో వ్యక్తీకరించబడుతుంది.ప్రతి సిమెన్స్ (ω/s) యూనిట్ ఓం ప్రతిఘటన మరియు ప్రవర్తన మధ్య సంబంధాన్ని సూచించడానికి ఉపయోగించబడుతుంది, పదార్థాలు విద్యుత్తును ఎలా నిర్వహిస్తాయనే దానిపై స్పష్టమైన అవగాహనను అందిస్తుంది.
సిమెన్స్ అనేది ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్స్ (SI) లో విద్యుత్ ప్రవర్తన యొక్క ప్రామాణిక యూనిట్.ఒక సిమెన్స్ వోల్ట్కు ఒక ఆంపియర్కు సమానం, మరియు దీనిని 'ఎస్' అనే చిహ్నం ద్వారా సూచిస్తుంది.ప్రతిఘటన (OHMS లో కొలుస్తారు) మరియు ప్రవర్తన మధ్య సంబంధం సూత్రం ద్వారా ఇవ్వబడుతుంది: [ G = \frac{1}{R} ] ఇక్కడ \ (g ) అనేది సిమెన్స్ మరియు \ (r ) లోని ప్రవర్తన ఓంలలో ప్రతిఘటన.
విద్యుత్ యొక్క ప్రారంభ రోజుల నుండి విద్యుత్ ప్రవర్తన యొక్క భావన గణనీయంగా అభివృద్ధి చెందింది.19 వ శతాబ్దం చివరలో జర్మన్ ఇంజనీర్ ఎర్నెస్ట్ వెర్నర్ వాన్ సిమెన్స్ గౌరవార్థం "సిమెన్స్" అనే పదాన్ని స్వీకరించారు.ఎలక్ట్రికల్ ఇంజనీరింగ్ అభివృద్ధి చెందుతున్నప్పుడు, ఈ రంగంలో సమర్థవంతమైన కమ్యూనికేషన్ మరియు గణన కోసం ప్రామాణిక యూనిట్ల అవసరం కీలకం.
సిమెన్స్కు ఓం వాడకాన్ని వివరించడానికి, 5 ఓంల నిరోధకత కలిగిన రెసిస్టర్ను పరిగణించండి.ప్రవర్తనను ఈ క్రింది విధంగా లెక్కించవచ్చు: [ G = \frac{1}{5 , \text{Ω}} = 0.2 , \text{S} ] అందువల్ల, రెసిస్టర్ యొక్క ప్రవర్తన 0.2 సిమెన్స్ లేదా 0.2 ω/s.
ఎలక్ట్రికల్ ఇంజనీరింగ్ మరియు భౌతిక శాస్త్రంలో ఓం ప్రతి సిమెన్స్కు ముఖ్యంగా ఉపయోగపడుతుంది, ఇక్కడ వివిధ పదార్థాల ద్వారా విద్యుత్ ప్రవాహాన్ని అర్థం చేసుకోవడం చాలా అవసరం.ఇది ఇంజనీర్లను సర్క్యూట్లను రూపొందించడానికి మరియు వాటి వాహక లక్షణాల ఆధారంగా పదార్థాలను ఎంచుకోవడానికి అనుమతిస్తుంది, ఇది సరైన పనితీరును నిర్ధారిస్తుంది.
విద్యుత్ ప్రవర్తన సాధనాన్ని సమర్థవంతంగా ఉపయోగించడానికి, ఈ దశలను అనుసరించండి: 1. 2. 3. ** లెక్కించండి **: ప్రవర్తన విలువను పొందటానికి "లెక్కించు" బటన్ పై క్లిక్ చేయండి. 4. ** ఫలితాలను వివరించండి **: పదార్థం యొక్క వాహక లక్షణాలను అర్థం చేసుకోవడానికి అవుట్పుట్ను సమీక్షించండి.
** నేను ప్రతిఘటనను ప్రవర్తనగా ఎలా మార్చగలను? ** .
** ప్రతిఘటన మరియు ప్రవర్తన మధ్య సంబంధం ఏమిటి? **
మరింత సమాచారం కోసం మరియు ఎలక్ట్రికల్ కండక్టెన్స్ సాధనాన్ని యాక్సెస్ చేయడానికి, [ఇనాయం యొక్క ఎలక్ట్రికల్ కండక్టెన్స్ కన్వర్టర్] (https://www.inaam.co/unit-converter/electrical_conductance) సందర్శించండి.మా సాధనాన్ని ఉపయోగించడం ద్వారా, మీరు మీ U ని మెరుగుపరచవచ్చు విద్యుత్ లక్షణాల అవగాహన మరియు మీ లెక్కలను సమర్థవంతంగా మెరుగుపరచండి.
MHO (V/℧) కు వోల్ట్ విద్యుత్ ప్రవర్తన యొక్క యూనిట్, ఇది విద్యుత్ ప్రవాహాన్ని నిర్వహించడానికి ఒక పదార్థం యొక్క సామర్థ్యాన్ని కొలుస్తుంది.ఇది ప్రతిఘటన యొక్క పరస్పర నుండి తీసుకోబడింది, ఇక్కడ ఒక MHO ఒక సిమెన్స్కు సమానం.ఎలక్ట్రికల్ ఇంజనీరింగ్లో ప్రవర్తన ఒక కీలకమైన పరామితి, ఎందుకంటే ఇది సర్క్యూట్లను విశ్లేషించడంలో మరియు వేర్వేరు పదార్థాల ద్వారా విద్యుత్ ఎంత సులభంగా ప్రవహిస్తుందో అర్థం చేసుకోవడానికి సహాయపడుతుంది.
MHO కి వోల్ట్ ఇంటర్నేషనల్ సిస్టమ్ ఆఫ్ యూనిట్ల (SI) లో ప్రామాణికం చేయబడింది, ఇక్కడ వోల్ట్ (V) విద్యుత్ సంభావ్యత యొక్క యూనిట్, మరియు MHO (℧) ప్రవర్తనను సూచిస్తుంది.ఈ ప్రామాణీకరణ వివిధ అనువర్తనాల్లో స్థిరమైన కొలతలను అనుమతిస్తుంది, ఇంజనీర్లు మరియు శాస్త్రవేత్తలు సమర్థవంతంగా కమ్యూనికేట్ చేయగలరని మరియు ఖచ్చితమైన డేటాపై ఆధారపడగలరని నిర్ధారిస్తుంది.
విద్యుత్ యొక్క ప్రారంభ రోజుల నుండి విద్యుత్ ప్రవర్తన యొక్క భావన గణనీయంగా అభివృద్ధి చెందింది."MHO" అనే పదాన్ని 19 వ శతాబ్దం చివరలో "ఓం" యొక్క ఫొనెటిక్ రివర్సల్గా రూపొందించారు, ఇది విద్యుత్ నిరోధకత యొక్క యూనిట్.ఎలక్ట్రికల్ ఇంజనీరింగ్లో పురోగతితో, ప్రవర్తన యొక్క ఉపయోగం చాలా ముఖ్యమైనది, ముఖ్యంగా సంక్లిష్ట సర్క్యూట్లు మరియు వ్యవస్థల విశ్లేషణలో.
MHO కి వోల్ట్ వాడకాన్ని వివరించడానికి, 10 వోల్ట్ల వోల్టేజ్ మరియు 2 MHO ల ప్రవర్తనతో సర్క్యూట్ పరిగణించండి.ప్రస్తుత (i) ను ఓం యొక్క చట్టాన్ని ఉపయోగించి లెక్కించవచ్చు:
[ I = V \times G ]
ఎక్కడ:
విలువలను ప్రత్యామ్నాయం:
[ I = 10 , \text{V} \times 2 , \text{℧} = 20 , \text{A} ]
దీని అర్థం 20 ఆంపియర్స్ కరెంట్ సర్క్యూట్ ద్వారా ప్రవహిస్తుంది.
MHO కి వోల్ట్ ఎలక్ట్రికల్ ఇంజనీరింగ్లో, ముఖ్యంగా సర్క్యూట్ విశ్లేషణ, విద్యుత్ వ్యవస్థలు మరియు ఎలక్ట్రానిక్లలో విస్తృతంగా ఉపయోగించబడుతుంది.సర్క్యూట్ విద్యుత్తును ఎంత సమర్థవంతంగా నిర్వహించగలదో నిర్ణయించడానికి ఇది ఇంజనీర్లకు సహాయపడుతుంది, ఇది సురక్షితమైన మరియు సమర్థవంతమైన విద్యుత్ వ్యవస్థలను రూపొందించడానికి చాలా ముఖ్యమైనది.
MHO కన్వర్టర్ సాధనానికి వోల్ట్ను ఉపయోగించడానికి, ఈ దశలను అనుసరించండి:
** నేను ఈ సాధనాన్ని ఎసి సర్క్యూట్ల కోసం ఉపయోగించవచ్చా? ** .
** MHO మరియు సిమెన్స్ మధ్య తేడా ఉందా? **
మరింత సమాచారం కోసం మరియు MHO కన్వర్టర్కు వోల్ట్ను యాక్సెస్ చేయడానికి, [ఇనాయం యొక్క ఎలక్ట్రికల్ కండక్టెన్స్ సాధనం] (https://www.inaam.co/unit-converter/electrical_conductance) సందర్శించండి.ఈ సాధనం విద్యుత్ ప్రవర్తనపై మీ అవగాహనను పెంచడానికి మరియు ఖచ్చితమైన లెక్కలు చేయడంలో మీకు సహాయపడటానికి రూపొందించబడింది.